
User Manual

Autonomous Navigation Solutions

Inertial Sense, Inc.

©2022

Table of Contents

51. Overview

51.1 IMX-5 (IMU, AHRS, and GPS-INS)

61.2 Features

71.3 Interfaces

71.4 Applications

92. Data Sheets

92.1 IMX-5 (IMU, AHRS, GNSS-INS)

92.2 GPX-1 (Multi-Band L1/L5 Dual GNSS Receiver)

92.3 uINS-3

103. Dimensions and Pinouts

103.1 IMX-5 Series

103.2 µINS-3 Series

103.3 Hardware Design Files

114. Getting Started

114.1 Getting Started

134.2 IMX-5 Quick Start Guide

144.3 GPX-1 Quick Start Guide

165. IS Hardware

165.1 Hardware Integration: IMX-5 Module

225.2 Hardware Integration: GPX-1 Module

315.3 Hardware Integration: RUG-3-IMX-5 (Rugged-3)

375.4 Hardware Integration: IG-1-IMX-5

445.5 Hardware Integration: IG-2 (IMX5 + GPX1)

515.6 Hardware Integration: IK-1 (IMX5 or GPX1)

575.7 Hardware Design Files

585.8 Reflow Soldering

606. IS Software

606.1 CLTool

656.2 EvalTool

796.3 SDK

816.4 Log Inspector

847. Communication Protocols

847.1 Protocol Overview

857.2 Data Sets (DIDs)

1597.3 Inertial Sense Binary (ISB) Protocol

Table of Contents

- 2/330 - ©2022

1657.4 NMEA 0183 (ASCII) Protocol

1837.5 SPI Protocol

1867.6 CAN Protocol

1948. GNSS - RTK

1948.1 Multi-band GNSS

2208.2 External NMEA GNSS

2228.3 GNSS Antennas

2278.4 GNSS Satellite Constellations

2288.5 RTK Positioning

2448.6 Dual GNSS RTK Compassing

2519. Dead Reckoning

2519.1 Ground Vehicle Dead Reckoning

2549.2 IMX Dead Reckoning Examples

26010. General Configuration

26010.1 Infield Calibration

26310.2 Platform Configuration

26410.3 IMU INS GNSS Configuration

26910.4 System Configuration

27010.5 Time Synchronization

27410.6 Zero Motion Command

27510.7 UART Interface

27611. SDK

27611.1 Inertial Sense SDK

27811.2 Example Projects

29512. Data Logging/Plotting

29512.1 Data Logging/Plotting

29812.2 Logging

30012.3 Plotting

30113. Reference

30113.1 IMX-5.0 Bootloader

30213.2 Coordinate Frames

30713.3 Definitions

30913.4 IMU Specifications

31013.5 Interference Considerations

31213.6 Magnetometer

31414. User Manual PDF

31515. Frequently Asked Questions

31515.1 What is a Tactical Grade IMU?

Table of Contents

- 3/330 - ©2022

31615.2 Why the name change from uINS to IMX?

31715.3 What is Inertial Navigation?

31715.4 What does an Inertial Navigation System (INS) offer over GPS alone?

31715.5 Our Sensors - IMU vs AHRS vs INS

31815.6 How long can the IMX dead reckoning estimate position without GPS?

31815.7 Can the IMX estimate position without GPS?

318

15.8 How does the IMX estimate roll/pitch during airborne coordinate turns (acceleration only in the Z axis and not in the

X and Y axes)?

31815.9 How does vibration affect navigation accuracy?

31815.10 Can the IMX operate underwater?

31915.11 Can the IMX operate at >4g acceleration?

31915.12 Customer Support

32016. Troubleshooting

32016.1 Firmware Troubleshooting

32416.2 Chip Erase

32816.3 IMX Firmware Troubleshooting

Table of Contents

- 4/330 - ©2022

Software Release 2.5.0 - 27 June 2025

Older (non-current) versions of the User Manual can be found on GitHub under the specific release tags.

1. Overview

1.1 IMX-5 (IMU, AHRS, and GPS-INS)

The IMX-5™ is a 10-DOF sensor module consisting of a tactical grade Inertial Measurement Unit (IMU), magnetometer, and

barometer. Output includes angular rate, linear acceleration, magnetic vector, and barometric pressure and altitude. IMU

calibration consists of bias, scale factor, cross-axis alignment, and temperature compensation. The IMX-5 includes Attitude

1. Overview

- 5/330 - ©2022

https://github.com/inertialsense/docs.inertialsense.com/tags
https://github.com/inertialsense/docs.inertialsense.com/tags
https://inertialsense.com/
https://inertialsense.com/

Heading Reference System (AHRS) sensor fusion to estimate roll, pitch, and heading. Adding GNSS input to the IMX-5 enables

onboard Inertial Navigation System (INS) sensor fusion for roll, pitch, heading, velocity, and position.

The RUG-3-IMX-5™ series adds a rugged aluminum enclosure and RS232, RS485, and CAN bus to the IMX-5.

The RUG-3-IMX-5-RTK™ includes a multi-frequency GNSS receiver with RTK precision position enabling INS sensor fusion for

roll, pitch, heading, velocity, and position.

The RUG-3-IMX-5-Dual™ includes two multi-frequency GNSS receivers with RTK precision position and dual GNSS heading/

compass.

The Inertial Sense SDK is an open-source software development kit for quick integration to configure and communicate with

Inertial Sense products. The SDK includes data logger, math libraries, and interface for Linux, Windows, and embedded

platforms.

1.2 Features

Tactical Grade IMU

Gyro: 1.5 °/hr Bias Instability, 0.16 °/√hr ARW

Accel: 19 µg Bias Instability, 0.02 m/s/√hr VRW

0.04° Dynamic Roll/Pitch

0.13° Dynamic Heading

Surface Mount Reflowable (PCB Module)

Up to 1KHz IMU Output Data Rate

Small Form Factor: 15.6 x 12.5 x 2.9 mm

Light Weight: 0.8 g

Low power consumption: <110mW

External GNSS Support (Multi-Band)

Attitude (Roll, Pitch, Yaw, Quaternions), Velocity, and Position UTC Time Synchronized

Triple Redundant IMUs Calibrated for Bias, Scale Factor, Cross-axis Alignment, and G-sensitivity

-40°C to 85°C Sensor Temperature Calibration

Binary and NMEA Protocol

Barometric Pressure and Humidity

Strobe In/Out Data Sync (Camera Shutter Event)

Fast Integration with SDK and Example Software

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.2 Features

- 6/330 - ©2022

https://github.com/inertialsense/inertial-sense-sdk
https://github.com/inertialsense/inertial-sense-sdk

1.3 Interfaces

1.4 Applications

Drone Navigation

Unmanned Vehicle Payloads

Stabilized Platforms

Antenna and Camera Pointing

First Responder and Personnel Tracking

Pedestrian and Auto Outdoor / Indoor Navigation

Health, Fitness, and Sport Monitors

Hand-held Devices

Robotics and Ground Vehicles

Maritime

Inertial Sense, Inc.

3000 S Sierra Vista Way Suite 5, Provo, UT 84606 USA

Phone 801-610-6771

Email support@inertialsense.com

Website: InertialSense.com

IMX Module EVB-2 Rugged

USB Yes Yes Yes

TTL/UART Yes Yes Yes

RS232/RS422/RS485 No Yes Yes

CAN Yes Yes Yes

SPI Yes Yes Yes

Integrated XBee Radio (RTK) No Yes (Option) No

WiFi/BTLE No Yes No

GPS Antenna Ports (Dual=Compassing) No Dual (Option) Dual (Option)

•

•

•

•

•

•

•

•

•

•

1.3 Interfaces

- 7/330 - ©2022

https://www.facebook.com/inertialsense
https://www.facebook.com/inertialsense
https://twitter.com/inertialsense
https://twitter.com/inertialsense
https://www.linkedin.com/company/inertial-sense
https://www.linkedin.com/company/inertial-sense
https://inertialsense.com/
mailto:support@inertialsense.com

© 2014-2025 Inertial Sense

Inertial Sense®, Inertial Sense logo and combinations thereof are registered trademarks or trademarks of Inertial Sense, Inc.

Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Inertial Sense products. No license, express or

implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of

Inertial Sense products. EXCEPT AS SET FORTH IN THE INERTIAL SENSE TERMS AND CONDITIONS OF SALES LOCATED

ON THE INERTIAL SENSE WEBSITE, INERTIAL SENSE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY

EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO

EVENT SHALL INERTIAL SENSE BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR

INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS

INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF

INERTIAL SENSE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Inertial Sense makes no representations or

warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make

changes to specifications and products descriptions at any time without notice. Inertial Sense does not make any commitment to

update the information contained herein. Unless specifically provided otherwise, Inertial Sense products are not suitable for, and

shall not be used in, automotive applications. Inertial Sense products are not intended, authorized, or warranted for use as

components in applications intended to support or sustain life. SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE

APPLICATIONS DISCLAIMER: Inertial Sense products are not designed for and will not be used in connection with any

applications where the failure of such products would reasonably be expected to result in significant personal injury or death

(“Safety-Critical Applications”) without an Inertial Sense officer's specific written consent. Safety-Critical Applications include,

without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons

systems. Inertial Sense products are not designed nor intended for use in military or aerospace applications or environments

unless specifically designated by Inertial Sense as military-grade.

1.4 Applications

- 8/330 - ©2022

2. Data Sheets

2.1 IMX-5 (IMU, AHRS, GNSS-INS)

Download Datasheet

2.2 GPX-1 (Multi-Band L1/L5 Dual GNSS Receiver)

Download Datasheet

2.3 uINS-3

Download Datasheet

2. Data Sheets

- 9/330 - ©2022

http://docs.inertialsense.com/datasheets/IMX-5_IMU_AHRS_GNSS-INS_Datasheet.pdf
http://docs.inertialsense.com/datasheets/GPX-1_GNSS_Datasheet.pdf
http://docs.inertialsense.com/datasheets/uIMU_uAHRS_uINS-3_Datasheet.pdf

3. Dimensions and Pinouts

3.1 IMX-5 Series

3.1.1 IMX-5 (Module)

Download PDF

3.1.2 GPX-1 (Module)

Download PDF

3.1.3 RUG-3-IMX-5-IMU

Download PDF

3.1.4 RUG-3-IMX-5-Dual

Download PDF

3.1.5 IG-1-IMX-5-Dual (Module)

Download PDF

3.2 µINS-3 Series

3.2.1 µINS-3 (Module)

Download PDF

3.2.2 RUG-2.0

Download PDF

3.2.3 RUG-1.1

Download PDF

3.3 Hardware Design Files

The Inertial Sense hardware design files are available on our IS-hdw repository to facilitate product hardware development and

integration.

Products - 3D models and resources for the IMX, Rugged, EVB, and products useful for CAD and circuit board designs.

Libraries for schematic and layout designs for printed circuit board.

•

3. Dimensions and Pinouts

- 10/330 - ©2022

https://docs.inertialsense.com/dimensions/IS-IMX-5.0_Dimensions_and_Pinout_IMX-5.pdf
https://docs.inertialsense.com/dimensions/IS-GPX-1.0_Dimensions_and_Pinout_GPX-1.pdf
https://docs.inertialsense.com/dimensions/IS-RUG-3.0-G0_Dimensions_and_Pinout_RUG-3-IMX-5.pdf
https://docs.inertialsense.com/dimensions/IS-RUG-3.0-G2_Dimensions_and_Pinout_RUG-3-IMX-5-Dual.pdf
https://docs.inertialsense.com/dimensions/IS-IG-1.1-G2-Dual_Dimensions_and_Pinout_IG-1-IMX-5-Dual.pdf
https://docs.inertialsense.com/dimensions/IS-uINS-3.2_Dimensions_and_Pinout.pdf
https://docs.inertialsense.com/dimensions/IS-RUG-2.0_Rugged_Assembly_and_Pinout.pdf
https://docs.inertialsense.com/dimensions/IS-RUG-1.1_Rugged_Assembly_and_Pinout.pdf
https://github.com/inertialsense/IS-hdw

4. Getting Started

4.1 Getting Started

The Inertial Sense Development platform was designed to provide a method of rapid evalution and integration. The following

steps will provide a simple method to begin basic integration.

4.1.1 1. Install Software

Inertial Sense software provides a way to view, manipulate, stream, and record the data generated by an IMX-5, GPX-1, and the

accompanying products.

EvalTool (Windows and Linux)

The EvalTool is a graphical Windows-based desktop program that allows users to explore, configure, and test functionality of

the Inertial Sense products in real-time. Download the EvalTool installer from the Inertial Sense releases page. Run the .exe

file and follow the instructions to complete the installation.

CLTool (Windows, Linux, and OS X)

The CLTool is a command line utility that can be used to read and display data, update firmware, and log data from Inertial

Sense products. CLTool must be compiled from our source code. Follow the instructions on the CLTool page.

SDK (Windows, Linux)

Software development kit to interface with Inertial Sense products. Download the file named "Source code" from our releases

page. The extracted folder contains code libraries as well as example projects.

•

•

•

4. Getting Started

- 11/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/releases
https://github.com/inertialsense/InertialSenseSDK/releases

4.1.2 2. Connect Hardware

Select the evaluation product from the list below to view instructions on basic connection to a computer.

IMX-5 PCB Module

GPX-1 PCB Module

Rugged-3 Units

IG-1 Units

IG-2 Units

IK-1 Units

4.1.3 3. Configuring Settings

The following sections contain instructions for basic configuration of IMX-5 based products and GPX-1 based products

respectively:

IMX-5 Basic Configuration

GPX-1 Basic Configuration

4.1.4 4. Evaluation and Testing

Once a connection to the unit has been established, please follow one of the following guides to get started with the software tool

of choice:

EvalTool

CLTool

SDK Example Projects

•

•

•

•

•

•

•

•

•

•

•

4.1.2 2. Connect Hardware

- 12/330 - ©2022

4.2 IMX-5 Quick Start Guide

4.2.1 Basic Configuration

The configuration settings found in DID_FLASH_CONFIG are used to configure the various features of the device. These can be

modified directly to the appropriate values using either the EvalTool, the CLTool, or the SDK. However, it is convenient initially to

configure the main features by modifying the settings in the GPS and General tabs withing the Settings tab of the EvalTool.

The antenna offset should also be configured by going to the Data Sets Tab and selecting DID_FLASH_CONFIG. The values of

each field can then be edited. Modify the following fields after identifying the antenna positions:

gps1AntOffset[X-Z] - Position offset of sensor frame with respect to GPS1 antenna.

gps2AntOffset[X-Z] - Position offset of sensor frame with respect to GPS2 antenna.

IMX-5 data sets can then be requested by one of several methods:

Requesting NMEA data using the ASCE command. There is a convenient tool in the lower left corner of the Data Logs tab of the

EvalTool.

Request data using the SDK commands: SDK Function

Use the EvalTool to modify the value of DID_GPX_RMC.bits as outlined in the SDK.

4.2.2 Demonstration Videos

Rugged-3-G2 GPS Compassing Configuration Demo

Rugged-3-G2 RS-485/422 Configuration Demo

4.2.3 Troubleshooting

If at any time issues are encountered, please check the troubleshooting sections of this manual.

1.

2.

1.

2.

3.

4.2 IMX-5 Quick Start Guide

- 13/330 - ©2022

https://github.com/inertialsense/inertial-sense-sdk/blob/68e5f20b994a0df43ef57720815aa7a16035d51f/src/data_sets.h#L2055

4.3 GPX-1 Quick Start Guide

4.3.1 Basic Configuration

When the GPX-1 is paired with an IMX-5, the IMX-5 will configure the GPX-1 automatically based on the configuration of the IMX-5.

No further action is required.

The GPX-1 should be connected to a host via a communications port: USB, UART, or SPI.

The configuration settings found in DID_GPX_FLASH_CONFIG are used to configure the various features of the device. These

can be modified directly to the appropriate values using either the EvalTool, the CLTool, or the SDK.

Configure the antenna offsets. This can be done easily in the EvalTool by going to the Data Sets Tab and selecting

DID_GPX_FLASH_CONFIG. The values of each field can then be edited. Modify the following fields after identifying the antenna

positions:

gps1AntOffset[X-Z] - Position offset of sensor frame with respect to GPS1 antenna.

gps2AntOffset[X-Z] - Position offset of sensor frame with respect to GPS2 antenna.

Note

1.

2.

4.3 GPX-1 Quick Start Guide

- 14/330 - ©2022

GNSS data sets can then be requested by one of several methods:

Requesting NMEA data using the ASCE command. There is a convenient tool in the lower left corner of the Data Logs tab of the

EvalTool.

Request data using the SDK commands: SDK Function

Use the EvalTool to modify the value of DID_GPX_RMC.bits as outlined in the SDK.

1.

2.

3.

4.3.1 Basic Configuration

- 15/330 - ©2022

https://github.com/inertialsense/inertial-sense-sdk/blob/68e5f20b994a0df43ef57720815aa7a16035d51f/src/data_sets.h#L2055

5. IS Hardware

5.1 Hardware Integration: IMX-5 Module

5.1.1 Pinout

The IMX-5 module is pin compatible with the uINS-3.

5. IS Hardware

- 16/330 - ©2022

5.1.1 Pinout

- 17/330 - ©2022

Pin Name I/O Description

0 Not Connected - Not connected internally. Connect to ground (GND).

1 USB_P I/O USB Data Positive Line

2 USB_N I/O USB Data Negative Line

3 VBKUP I GNSS backup supply voltage. (1.4V to 3.6V) enables GNSS hardware

backup mode for hot or warm startup (faster GNSS lock acquisition).

MUST connect VBKUP to VCC if no backup battery is used.

4 G1/Rx2/RxCAN/

SCL

I/O GPIO1

Serial 2 input (TTL)

Serial input pin from CAN transceiver
*

I2C SCL line

5 G2/Tx2/TxCAN/

SDA/STROBE

I/O GPIO2

Serial 2 output (TTL)

Serial output pin to CAN transceiver
*

I2C SDA line

Strobe time sync input

6 G6/Rx1/MOSI I/O GPIO6

Serial 1 input (TTL)

SPI MOSI

7 G7/Tx1/MISO I/O GPIO7

Serial 1 output (TTL)

SPI MISO

8 G8/CS/STROBE I/O GPIO8

SPI CS

Strobe time sync input

9 G5/SCLK/STROBE I/O GPIO5

SPI SCLK

Strobe time sync input

10 G9/nSPI_EN/

STROBE

/STROBE_OUT/

DRDY

I/O GPIO9

SPI Enable: Hold LOW during boot to enable SPI on G5-G8

Strobe time sync input or output. SPI data ready alternate location

11,21,P GND - Supply ground

12 nRESET I System reset on logic low. May be left unconnected if not used.

13 G14/SWCLK I/O GPIO14

14 G13/DRDY/XSDA I/O GPIO13

SPI Data Ready

Alt I2C SDA

15 G12/SWO/XSCL I/O GPIO12

Alt I2C SCL

16 G11/SWDIO I/O GPIO11

17 G10/BOOT_MODE I/O Leave unconnected. BOOT MODE used in manufacturing. !!! WARNING

!!! Asserting a logic high (+3.3V) will cause the IMX to reboot into ROM

bootloader (DFU) mode.

18 G4/Rx0 I/O GPIO4

Serial 0 input (TTL)

5.1.1 Pinout

- 18/330 - ©2022

*External transceiver required for CAN interface.

5.1.2 Application

Serial Interface

The following schematic demonstrates a typical setup for the IMX-5 module. A rechargeable lithium backup battery enables the

GNSS to perform a warm or hot start. If no backup battery is connected, VBKUP (pin 3) should be connected to VCC and the

module will perform a cold start on power up. If the system processor is not capable of updating the IMX firmware, it is

recommended to add a header to an alternate IMX serial port for firmware updates via an external computer. The reset line is

not necessary for typical use.

+

3V
BAT1

+3.3V

IMX Module

1K1

R1

D1

+3.3V

0.1uF

1 C1

System Processor

TTL Serial Tx
TTL Serial Rx

Timepulse Input

Optional Firmware

Update Header

IS-uINS-3.2-G2

USB.DP
1

RESET
12

USB.DN
2

GPS.VBAT
3

G1/Rx2/RxCAN
4

G2/Tx2/TxCAN/STROBE
5

G6/Rx1/MOSI
6

G7/Tx1/MISO
7

G8/CS/STROBE
8

G5/SCLK/STROBE
9

G9/SPI_EN/STROBE
10

GND
11

G14/JTAG_SWCLK
13

G13/DATA_RDY
14

G12/JTAG_SWO
15

G11/JTAG_SWDIO
16

G10/BOOT_MODE
17

G3/Tx0
19

G4/Rx0
18

GPS.TIMEPULSE
20

GND
21

VCC
22

U1(U9)

The following are recommended components for the typical application. Equivalent or better components may be used.

SPI Interface

The SPI interface is enabled by holding the pin 10 low during boot up.

Pin Name I/O Description

19 G3/Tx0 I/O GPIO3

Serial 0 output (TTL)

20 G15/GNSS_PPS I Input for GNSS PPS for time synchronization pulse.

22 VCC I 3.3V supply input

Designator Manufacturer Manufacturer # Description

BAT1 Panasonic ML-614S/FN BATTERY LITHIMU 3V RECHARGABLE SMD

D1 Panasonic DB2J31400L DIODE SCHOTTKY 30V 0.03A SMINI2

R1 RES 1.00K OHM 1/16W 1%

C1 CAP CER .10UF 50V X7R 10%

5.1.2 Application

- 19/330 - ©2022

+

3V
BAT1

+3.3V

IMX Module

1K1

R1

D1

+3.3V

0.1uF

1

C1

System Processor

SPI MOSI
SPI MISO

Timepulse Input

SPI CS

SPI CLK

Data Ready

IS-uINS-3.2-G2

USB.DP
1

RESET
12

USB.DN
2

GPS.VBAT
3

G1/Rx2/RxCAN
4

G2/Tx2/TxCAN/STROBE
5

G6/Rx1/MOSI
6

G7/Tx1/MISO
7

G8/CS/STROBE
8

G5/SCLK/STROBE
9

G9/SPI_EN/STROBE
10

GND
11

G14/JTAG_SWCLK
13

G13/DATA_RDY
14

G12/JTAG_SWO
15

G11/JTAG_SWDIO
16

G10/BOOT_MODE
17

G3/Tx0
19

G4/Rx0
18

GPS.TIMEPULSE
20

GND
21

VCC
22

U1(U9)

5.1.3 Manufacturing

Soldering

The IMX-5 can be reflow soldered. Reflow information can be found in the Reflow Information page of this manual.

Tape Packaging

The IMX-5 modules are available in cut tape as well as tape and reel packaging. The follow image shows the feed direction and

illustrates the orientation of the IMX-5 module on the tape:

5.1.3 Manufacturing

- 20/330 - ©2022

The feed direction to the pick and place pick-up is shown by the orientation of the IMX-5 pin 1 location. With pin 1 location on the

bottom of the tape, the feed direction into the pick and place pick-up is from the reel (located to the right of the figure) towards

the left.

The dimensions of the tapes for the IMX-5 are shown in the drawing below:

5.1.4 Hardware Design

Recommend PCB Footprint and Layout

A single ceramic 100nF decoupling capacitor should be placed between and in close proximity to the IMX pins 21 and 22 (GND

and Vcc). It is recommended that this capacitor be on the same side of the PCB as the IMX and that there not be any vias

between the capacitor and the Vcc and GND pins. The default forward direction is indicated in the PCB footprint figure and on

the IMX shield as the X axis. The forward direction is reconfigurable in software as necessary.

Download PDF

5.1.5 Design Files

Open source hardware design files, libraries, and example projects for the IMX module are found at the

Inertial Sense Hardware Design repository hosted on GitHub. These include schematic and layout files for

printed circuit board designs, and 3D step models of the InertialSense products usable for CAD and circuit

board designs.

Reference Design Projects

The EVB-2 and IG-1 circuit board projects serve as reference designs that illustrate implementation of the IMX PCB module.

EVB-2 evaluation board

IG-1 module

5.1.4 Hardware Design

- 21/330 - ©2022

https://docs.inertialsense.com/dimensions/IS-IMX-5.0_Dimensions_and_Pinout_IMX-5.pdf
https://github.com/inertialsense/IS-hdw
https://github.com/inertialsense/IS-hdw/tree/main/Products/EVB-2-1
https://github.com/inertialsense/IS-hdw/tree/main/Products/IG-1-1-G2

5.2 Hardware Integration: GPX-1 Module

5.2.1 Pinout

The GPX-1 module footprint and pinout similar that of the IMX-5 such that the common power and interface pins are at the same

location. The GPX-1 is extended to accommodate additional GNSS inputs and output. The GPX-1 is designed to work in

conjunction with the IMX-5.

5.2 Hardware Integration: GPX-1 Module

- 22/330 - ©2022

5.2.1 Pinout

- 23/330 - ©2022

Pin Name Type Description

0 GND Power Supply ground on center pads.

1 USB_P I/O USB full-speed Positive Line. USB will be supported in future firmware

updates.

2 USB_N I/O USB full-speed Negative Line. USB will be supported in future

firmware updates.

3 VBKUP Power Backup supply voltage input (1.75V to 3.6V). Future firmware updates

will use voltage applied on this pin to backup GNSS ephemeris,

almanac, and other operating parameters for a faster startup when

VCC is applied again. This pin MUST be connected to a backup battery

or VCC.

4 G1/Rx2/RxCAN/

SCL

I/O GPIO1

Serial 2 input (TTL)

Serial input pin from CAN transceiver
*

I2C SCL line

5 G2/Tx2/TxCAN/

SDA/STROBE

I/O GPIO2

Serial 2 output (TTL)

Serial output pin to CAN transceiver
*

I2C SDA line

Strobe time sync input

6 G6/Rx1/MOSI I/O GPIO6

Serial 1 input (TTL)

SPI MOSI

7 G7/Tx1/MISO I/O GPIO7

Serial 1 output (TTL)

SPI MISO

8 G8/CS/STROBE I/O GPIO8

SPI CS

Strobe time sync input

9 G5/SCLK/

STROBE

I/O GPIO5

SPI SCLK

Strobe time sync input

10 G9/nSPI_EN/

STROBE

/STROBE_OUT/

DRDY

I/O GPIO9

SPI Enable: Hold LOW during boot to enable SPI on G5-G8

Strobe time sync input or output. SPI data ready alternate location

11,13,15,31 GND Power Supply ground

12 GNSS1_RF I GNSS1 antenna RF input. Use an active antenna or LNA with a gain of

15-25dB. Place the LNA as close to the antenna as possible. Filtered

3.3V from VCC is injected onto the pad to power active antennas

(power injection can be disabled in software). Connect to ground with

5V-14V TVS diode for ESD and surge projection (e.g. Littlefuse

PESD0402-140).

14 GNSS2_RF I GNSS2 antenna RF input. Same requirements as GNSS1_RF

16 VCC_RF O Supply output for GNSS active antenna. Connect VCC_RF through

33-120nH inductor (e.g. Murata LQW15ANR12J00D, 110mA max) to

GNSS1_RF and GNSS2_RF to inject DC supply for active antenna(s).

VCC_RF is supplied from VAUX through an onboard 1A load switch and

5.2.1 Pinout

- 24/330 - ©2022

*External transceiver required for CAN interface.

Pin Name Type Description

10 ohm resistor. Disable by setting GPX_SYS_CFG_BITS_DISABLE_VCC_RF

(0x00000001) in DID_GPX_FLASH_CFG.sysCfgBits .

20 G20/LNA-EN I/O GPIO20

21 GNSS2_PPS O GNSS2 PPS time synchronization output pulse (1Hz, 10% duty cycle)

22 nRESET I System reset on logic low. May be left unconnected if not used.

23 G14/SWCLK I/O GPIO14

24 G13/DRDY/

XSDA

I/O GPIO13

SPI Data Ready

Alt I2C SDA

25 G12/XSCL I/O GPIO12

Alt I2C SCL

26 G11/SWDIO I/O GPIO11

27 G10/

BOOT_MODE

I/O Leave unconnected. BOOT MODE used in manufacturing. !!!

WARNING !!! Asserting a logic high (+3.3V) will cause the IMX to

reboot into ROM bootloader (DFU) mode.

28 G4/Rx0 I/O GPIO4

Serial 0 input (TTL)

29 G3/Tx0 I/O GPIO3

Serial 0 output (TTL)

30 GNSS1_PPS O GNSS1 PPS time synchronization output pulse (1Hz, 10% duty cycle)

32 VCC Power 1.8V to 3.3V supply input.

38 G16/QDEC0.A I/O GPIO16

39 G17/QDEC0.B I/O GPIO17

40 VAUX Power Input supplies for the USB and VCC_RF (GNSS antenna supply).

Connect to +3.3V (3.0V to 3.6V) to supply USB and VCC_RF. Can be

left floating if USB or VCC_RF are not needed.

41 G18/QDEC1.A I/O GPIO18

42 G19/QDEC1.B I/O GPIO19

5.2.1 Pinout

- 25/330 - ©2022

5.2.2 Application

GNSS-INS Block Diagram

5.2.2 Application

- 26/330 - ©2022

Typical Application: GPX-1 IMX-5

Designator Manufacturer Part Number Description

D1, D2 Littlefuse PESD0402-140 TVS DIODE 14VWM 40VC 0402

I1, I4 Murata LQW15ANR12J00D FIXED IND 120NH 110MA 2.66OHM SM

5.2.2 Application

- 27/330 - ©2022

5.2.3 Layout Guidance

GNSS_RF Trace

The GNSS_RF trace should be designed to work in the combined GNSS L1 + L5 signal band.

For FR-4 PCB material with a dielectric permittivity of for example 4.2, the trace width for the 50 Ω line impedance can be

calculated.

A grounded co-planar RF trace is recommended as it provides the maximum shielding from noise with adequate vias to the

ground layer.

The RF trace must be shielded by vias to ground along the entire length of the trace and the ZEDF9P RF_IN pad should be

surrounded by vias as shown in the figure below.

[INSERT LAYOUT FIGURE HERE]

5.2.3 Layout Guidance

- 28/330 - ©2022

5.2.4 Design Guidance

Backup Battery

For achieving a minimal Time To First Fix (TTFF) after a power down (warm starts, hot starts), make sure to connect a backup

battery to V_BCKP.

Verify your battery backup supply can provide the battery backup current specified in the ZEDF9P datasheet.

Allow all I/O including UART and other interfaces to float/high impedance in battery backup mode (battery back-up connected

with VCC removed).

RF Front-end Circuit Options

Active antenna(s) are required for the GPX-1.

5.2.5 Manufacturing

Soldering

The GPX-1 can be reflow soldered. Reflow information can be found in the Reflow Information page of this manual.

Tape Packaging

The GPX-5 modules are available in cut tape as well as tape and reel packaging. The follow image shows the feed direction and

illustrates the orientation of the GPX-1 module on the tape:

The feed direction to the pick and place pick-up is shown by the orientation of the GPX-1 pin 1 location. With pin 1 location on

the bottom of the tape, the feed direction into the pick and place pick-up is from the reel (located to the right of the figure)

towards the left.

The dimensions of the tapes for the GPX-1 are shown in the drawing below:

•

•

Important

5.2.4 Design Guidance

- 29/330 - ©2022

5.2.6 Hardware Design

Recommend PCB Footprint and Layout

A single ceramic 100nF decoupling capacitor should be placed between and in close proximity to the module pins 31 and 32

(GND and Vcc). It is recommended that this capacitor be on the same side of the PCB as the GPX and that there not be any vias

between the capacitor and the Vcc and GND pins.

Download PDF

5.2.7 Design Files

Open source hardware design files, libraries, and example projects for the GPX module are found at the

Inertial Sense Hardware Design repository hosted on GitHub. These include schematic and layout files for

printed circuit board designs, and 3D step models of the InertialSense products usable for CAD and circuit

board designs.

Reference Design Projects

Coming soon

5.2.6 Hardware Design

- 30/330 - ©2022

https://docs.inertialsense.com/dimensions/IS-GPX-1.0_Dimensions_and_Pinout_GPX-1.pdf
https://github.com/inertialsense/IS-hdw

5.3 Hardware Integration: RUG-3-IMX-5 (Rugged-3)

The RUG-3-IMX-5 series adds a rugged aluminum enclosure and RS232, RS485, and CAN bus to the IMX-5.

The RUG-3-IMX-5-RTK includes a multi-frequency GNSS receiver with RTK precision position enabling INS sensor fusion for

roll, pitch, heading, velocity, and position.

The RUG-3-IMX-5-Dual includes two multi-frequency GNSS receivers with RTK precision position and dual GNSS heading/

compass.

Integrated CAN transceiver, RS232, RS485, TTL serial, USB, and SPI interfaces.

Dual onboard multi-band GNSS receiver(s).

Dual antenna ports for GPS compassing.

5.3.1 Features

Tactical Grade IMU

Gyro: 1.5 °/hr Bias Instability, 0.16 °/√hr ARW

Accel: 19 µg Bias Instability, 0.02 m/s/√hr VRW

INS, AHRS

Dynamic: 0.04° Roll/Pitch, 0.13° Heading

Static: 0.1° Roll/Pitch, 0.5° Heading

Up to 1KHz IMU Output Data Rate

Dual onboard multi-band (L1/L2/E5) GNSS receivers

Dual MMCX antenna ports for GPS compassing

Size: 25.4 x 25.4 x 20.0 mm

Light weight: 14g

Low power consumption: <1500mW

UART x3, RS232, RS485, CAN, and SPI interfaces

Integrated CAN and RS232 / RS485 transceivers

Voltage regulation for 4V - 20V input

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3 Hardware Integration: RUG-3-IMX-5 (Rugged-3)

- 31/330 - ©2022

5.3.2 Applications

Drone Navigation

Unmanned Vehicle Payloads

Ground and Aerial Survey

Automotive Navigation

Stabilized Platforms

Antenna and Camera Pointing

First Responder and Trackers

Health, Fitness, and Sport Monitors

Robotics and Ground Vehicles

Maritime

5.3.3 Connecting Your Unit

For the purposes of basic evaluation, the easiest interface available on the rugged is the included USB to Gecko connector cable,

included in the evaluation kit. The cable provides power and communications with the installed module via USB virtual

communications port.

GPS Antenna Ports

If using GPS with the module, connect an appropriate antenna to MMCX port 1 (GPS1). If the module is used for RTK

compassing, connect a second antenna to MMCX port 2, (GPS2).

5.3.4 Pinout

The pin numbering of the Rugged main connector does not match that of the connector manufacturer. Please refer to the drawings in

the Dimensions and Pinouts page for the correct pin numbering.

•

•

•

•

•

•

•

•

•

•

Warning

5.3.2 Applications

- 32/330 - ©2022

The following table shows the Rugged-3 pinout. Note that pin function can change based on changing

DID_FLASH_CONFIG.platformConfig (see I/O Configuration below).

* The CAN bus is enabled by default on pins 11,12 (R16,R17 removed and R14,R15 loaded with 0402 zero ohm jumpers).

** To disable CAN bus and enable Serial2 TTL or STROBE on pins 11,12, remove R14,R15 and load R16,R17 with 0402 zero ohm jumpers.

Rugged

Pin

IMX

Pin

Name I/O Description

1 GND PWR -

2 G9 G9_STROBE I/O G9-Strobe time sync input. (Includes 3K ohm

series resistor)

3 VIN PWR 4V-20V supply voltage input

4 USB.D+ I/O USB Data Positive Line

5 GPS_PPS O GPS PPS time synchronization output pulse

(1Hz, 10% duty cycle)

6 USB.D- I/O USB Data Negative Line

7 G3

G2

G5

Tx0

485Tx1+

SCLK

O

O

I

Serial 0 output (TTL or RS232)

Serial 1 output+ (RS485/RS422)

SPI clock

8 G2

G2

G7

Tx2

485Tx1-

Tx1, MISO

O

O

O

Serial 2 output (TTL)

Serial 1 output- (RS485/RS422)

Serial 1 output (TTL or RS232), SPI MISO

9 G4

G1

G8

Rx0

485Rx1-

CS, G8_STROBE

I

I

I

Serial 0 input (TTL or RS232)

Serial 1 input- (RS485/RS422)

SPI chip select, G8-Strobe time sync input

10 G1

G1

G6

Rx2

485Rx1+

Rx1, MOSI

I

I

I

Serial 2 input (TTL)

Serial 1 input+ (RS485/RS422)

Serial 1 input (TTL or RS232), SPI MOSI

11 G1

G1

CANL
*

Rx2
**

I/O

I

High level (CAN bus)

Serial 2 input (TTL)
**

12 G2

G2

CANH
*

Tx2,

G2_STROBE
**

I/O

I/O

Low level (CAN bus)
*
.

Serial 2 output (TTL)
**

, G2-Strobe time sync

input
**

5.3.4 Pinout

- 33/330 - ©2022

5.3.4 Pinout

- 34/330 - ©2022

5.3.5 I/O Configuration

The Rugged 3 "MAIN" connector pinout can be configured for USB, TTL, RS232, RS485, and CAN by setting the

DID_FLASH_CONFIG.platformConfig .

* RUG-3-G0 default

** RUG-3-G2 default

5.3.6 Hardware Versions

The following outlines differences in the RUG-3 hardware versions.

RUG-3.1

Use platform config RUG-3 with this hardware version.

GPS1 PPS line connected to IMX G15 (pin 20).

RS485 Tx pins polarity swapped between pins 7,8 (from RUG-2)

RUG-2.1 (RUG-3.0)

Use platform config RUG-2.1 with this hardware version.

GPS1 PPS line connected to IMX G9 (pin 10).

MAIN pin 5 is connected to IMX G15 (pin 20).

MAIN pin 5 is not connected to GPS1 PPS.

RUG-3 Pin

IMX Pin

7,9

G3,G4

(G5,G8)

8,10

G1,G2

11,12

G1,G2

GPS1 GPS2

I/O Preset

1 * S0-RS232 CAN S1

2 S0-TTL CAN S1

3 S0-TTL S2-TTL or

G2-STROBE

S1

4 S0-RS232 S1-RS232 S2

5 S1-RS485 S1-RS485 S2 S0

6 SPI or

G8-STROBE

SPI S2 S0

7 ** S1-RS232 S2 S0

8 CAN S1 S0

9 S2-TTL S1 S0

•

•

•

•

•

5.3.5 I/O Configuration

- 35/330 - ©2022

5.3.7 Related Parts

See the Multi-Band GNSS page for GNSS antenna options.

5.3.8 Using with Inertial Sense Software

Please return to the getting started page to get started programming, updating firmware, viewing data, and logging.

Part Manufacturer Manufacturer # Description

Main Connector Harwin G125-

FC11205L0-0150L

1.25MM F/F 12POS 26AWG 150MM

GPS antenna SMA

adapter

Crystek

Corporation

CCSMX-FBM-RG178-6 6" MMCX to SMA GPS antenna adaptor

cable.

GPS antenna SMA

adapter

Crystek

Corporation

CCSMX1-FBM-

RG178-6

6" R/A MMCX to SMA GPS antenna

adaptor cable.

5.3.7 Related Parts

- 36/330 - ©2022

5.4 Hardware Integration: IG-1-IMX-5

The Inertial Sense IG-1 is a PCB module with IMX-5 and dual ublox ZED-F9P multi-frequency GNSS receivers.

Surface mount reflowable.

Onboard dual GNSS for simultaneous RTK positioning and GPS compassing.

Micro USB and 14 pin I/O header for convenient evaluation.

5.4.1 Connecting Your Unit

For the purposes of basic evaluation, the easiest interface available on the IG-1 is by using a micro-USB cable. A cable included

in the evaluation kit. The cable provides power and communications with the installed module via USB virtual communications

port.

5.4.2 Pinout

Module Pinout

•

•

•

5.4 Hardware Integration: IG-1-IMX-5

- 37/330 - ©2022

1

2

3

4

5

6

7

8

9

10

11

12

13

14

26

27

28

29

30

31

32

33

34

35

36

48

49

50

51

52

53

54

55

56

57

58

47

46

45

44

43

42

41

40

39

38

37

25

24

23

22

21

20

19

18

17

16

15

TOP VIEW

69

68

67

66

65

64

63

62

61

60

59

5.4.2 Pinout

- 38/330 - ©2022

Header H1 Pinout

5.4.2 Pinout

- 39/330 - ©2022

The module and header H1 have the same pinout assignment for pins 1-14. All pins 15 and above are only on the module.

5.4.2 Pinout

- 40/330 - ©2022

Module

& H1 Pin

Name I/O Description

1
GND PWR -

2
VIN PWR 4V-20V supply voltage input

3
+3.3V PWR Regulated 3.3V supply input/output.

4
Reserved Not Connected

5
G1/Rx2/RxCAN/SCL I/O GPIO1

Serial 2 input (TTL)

Serial input pin from CAN transceiver
*

I2C SCL line6

6
G2/Tx/TxCAN/SDA/

STROBE

I/O GPIO2

Serial 2 output (TTL)

Serial output pin to CAN transceiver
*

I2C SDA line

Strobe time sync input

7
G3/Tx0 I/O GPIO3

Serial 0 output (TTL)

8
G4/Rx0 I/O GPIO4

Serial 0 input (TTL)

9
G5/SCLK/STROBE I/O GPIO5

SPI SCLK

Strobe time sync input

10
G6/Rx1/MOSI I/O GPIO6

Serial 1 input (TTL)

SPI MOSI

11
G7/Tx1/MISO I/O GPIO7

Serial 1 output (TTL)

SPI MISO

12
G8/CS/STROBE I/O GPIO8

SPI CS

Strobe time sync input

13
G9/nSPI_EN/

STROBE

/STROBE_OUT/

SPI_DRDY

I/O GPIO9

SPI Enable: Hold LOW during boot to enable SPI on G5-G8

Strobe time sync input or output. SPI data ready alternate location.

14
GPS_TIMEPULSE O GPS1 PPS UTC time synchronization signal.

15 GND I/O -

16 VBAT I/O GPS backup supply voltage. (1.4V to 3.6V) enables GPS hardware

backup mode for hot or warm startup (faster GPS lock acquisition).

MUST connect GPS_VBAT to VCC if no backup battery is used.

17 G10/BOOT_MODE I/O Leave unconnected. BOOT MODE used in manufacturing. !!!

WARNING !!! Asserting a logic high (+3.3V) will cause the IMX to

reboot into ROM bootloader (DFU) mode.

18 G11 I/O GPIO11

5.4.2 Pinout

- 41/330 - ©2022

5.4.3 Hardware Versions

The following outlines differences in the IG-1.x hardware versions.

IG-1.2

GPS1 ZED-F9P RXD2/TXD2 lines connected to IG-1 pins 26, 27.

GPS2 ZED-F9P RXD2/TXD2 lines connected to IG-1 pins 28, 29.

GPS1 ZED-F9P PPS (TIMEPULSE) line connected to IG-1 pin 31.

IG-1 pins 32-36 are not connected internally (not connected to ground).

IG-1.1

GPS1 PPS line connected to IMX TIMEPUSE G15 (pin 20).

IG-1 pins 26-36 are connected to ground.

IG-1.0

GPS1 PPS line connected to IMX G8 (pin 8).

IG-1 pins 26-36 are connected to ground.

5.4.4 Schematic

Download Schematic

Module

& H1 Pin

Name I/O Description

19 G12 I/O GPIO12

GPS reset

20 G13/DRDY I/O GPIO13

SPI data ready

21 G14/SWCLK I/O GPIO14

22 nRESET I System reset on logic low. May be left unconnected if not used.

23 GND PWR -

24 USB_N I/O USB Data Negative Line

25 USB_P I/O USB Data Positive Line

26 GPS1_RX2 I Ublox ZED-F9P RXD2 (GPS1)

27 GPS1_TX2 O Ublox ZED-F9P TXD2 (GPS1)

28 GPS2_RX2 I Ublox ZED-F9P RXD2 (GPS2)

29 GPS2_TX2 O Ublox ZED-F9P TXD2 (GPS2)

30 +3.3V PWR Regulated 3.3V supply input/output.

31 GPS2_TIMEPULSE O GPS2 PPS UTC time synchronization signal.

32-36 NC - Not connected internally

37-69 GND PWR -

•

•

•

•

•

•

•

•

5.4.3 Hardware Versions

- 42/330 - ©2022

https://docs.inertialsense.com/datasheets/IG-1_schematic.pdf

5.4.5 Hardware Design

Recommend PCB Footprint and Layout

The default forward direction is indicated in the PCB footprint figure and on the silkscreen as the X axis. The forward direction is

reconfigurable in software as necessary.

Download PDF

5.4.6 Soldering

The IMX-5 can be reflow soldered. Reflow information can be found in the Reflow Information section of this manual.

5.4.7 Design Files

Open source hardware design files, libraries, and example projects for the IMX module are found at the

Inertial Sense Hardware Design repository hosted on GitHub. These include schematic and layout files for

printed circuit board designs, and 3D step models of the InertialSense products usable for CAD and circuit

board designs.

Reference Design Projects

The IG-1 circuit board projects serve as reference designs that illustrate implementation of the IMX PCB module.

IG-1 module

5.4.8 Related Parts

Part Manufacturer Manufacturer # Description

H1 JST GHR-14V-S 14 pin connector 1.25mm pitch for IMX I/O connection.

5.4.5 Hardware Design

- 43/330 - ©2022

https://docs.inertialsense.com/dimensions/IS-IG-1.1-G2-Dual_Dimensions_and_Pinout_IG-1-IMX-5-Dual.pdf
https://github.com/inertialsense/IS-hdw
https://github.com/inertialsense/IS-hdw/tree/main/Products/IG-1

5.5 Hardware Integration: IG-2 (IMX5 + GPX1)

The Inertial Sense IG-2 is a PCB module with IMX-5 and GPX-1 multi-frequency GNSS receiver.

Surface mount reflowable.

Onboard dual GNSS for simultaneous RTK positioning and GPS compassing.

Micro USB and 14 pin I/O header for convenient evaluation.

5.5.1 Connecting Your Unit

For the purposes of basic evaluation, the easiest interface available on the IG-2 is by using a micro-USB cable. A cable included

in the evaluation kit. The cable provides power and communications with the installed module via USB virtual communications

port.

5.5.2 Pinout

Module Pinout

•

•

•

5.5 Hardware Integration: IG-2 (IMX5 + GPX1)

- 44/330 - ©2022

1

2

3

4

5

6

7

8

9

10

11

12

13

14

26

27

28

29

30

31

32

33

34

35

36

47

46

45

44

43

42

41

40

39

38

37

25

24

23

22

21

20

19

18

17

16

15

TOP VIEW

Header H1 Pinout

5.5.2 Pinout

- 45/330 - ©2022

5.5.2 Pinout

- 46/330 - ©2022

The IG-2 module and IG-2 header H1 have the same pinout assignment for pins 1-14. Because H1 only has 14 pins, pins 15 and

above listed in the following table are only on the IG-2 module.

5.5.2 Pinout

- 47/330 - ©2022

IG-2

Module

& IG-2

H1 Pin

Name I/O Description

1
GND PWR -

2
VIN PWR 4V-20V supply voltage input

3
+3.3V PWR Regulated 3.3V supply input/output.

4
Reserved Not Connected

5
G1/Rx2/RxCAN/SCL I/O IMX GPIO1

Serial 2 input (TTL)

Serial input pin from CAN transceiver
*

I2C SCL line6

6
G2/Tx2/TxCAN/SDA/

STROBE

I/O IMX GPIO2

Serial 2 output (TTL)

Serial output pin to CAN transceiver
*

I2C SDA line

Strobe time sync input

7
G3/Tx0 I/O IMX GPIO3

Serial 0 output (TTL)

8
G4/Rx0 I/O IMX GPIO4

Serial 0 input (TTL)

9
G5/SCLK/STROBE I/O IMX GPIO5

SPI SCLK

Strobe time sync input

10
G6/Rx1/MOSI I/O IMX GPIO6

Serial 1 input (TTL)

SPI MOSI

11
G7/Tx1/MISO I/O IMX GPIO7

Serial 1 output (TTL)

SPI MISO

12
G8/CS/STROBE I/O IMX GPIO8

SPI CS

Strobe time sync input

13
G9/nSPI_EN/

STROBE

/STROBE_OUT/

SPI_DRDY

I/O IMX GPIO9

SPI Enable: Hold LOW during bootup to enable SPI on G5-G8

Strobe time sync input or output. SPI data ready alternate location.

14
GPS.TIMEPULSE O GPS PPS UTC time synchronization signal.

15 GND PWR -

16 VBAT I/O GPS backup supply voltage. (1.4V to 3.6V) enables GPS hardware

backup mode for hot or warm startup (faster GPS lock acquisition).

MUST connect GPS_VBAT to VCC if no backup battery is used.

17 G10/BOOT_MODE I/O Leave unconnected. IMX BOOT MODE used in manufacturing. !!!

WARNING !!! Asserting a logic high (+3.3V) will cause the IMX to

reboot into ROM bootloader (DFU) mode.

5.5.2 Pinout

- 48/330 - ©2022

5.5.3 Schematic

Download Schematic

5.5.4 Hardware Design

Recommend PCB Footprint and Layout

The default forward direction is indicated in the PCB footprint figure and on the silkscreen as the X axis. The forward direction is

reconfigurable in software as necessary.

IG-2

Module

& IG-2

H1 Pin

Name I/O Description

18 G11 I/O IMX GPIO11

19 G12 I/O IMX GPIO12

GPS reset

20 G13/DRDY I/O IMX GPIO13

SPI data ready

21 G14/SWCLK I/O IMX GPIO14

22 nRESET I System reset (IMX and GPX) on logic low. May be left unconnected

if not used.

23 GND PWR -

24 USB_N I/O IMX USB Data Negative Line

25 USB_P I/O IMX USB Data Positive Line

26 GPX_G16/QDEC0A I/O GPX GPIO16

27 GPX_G17/QDEC0B I/O GPX GPIO17

28 GPX_G18/QDEC1A I/O GPX GPIO18

29 GPX_G19/QDEC1B I/O GPX GPIO19

30 +3.3V PWR Regulated 3.3V supply input/output.

31 GPX_G10_BOOT I/O GPX GPIO10

32 GPX_G5/SCLK I/O GPX GPIO5

GPX SPI clock

33 GPX_G6/Rx1/MOSI I/O GPX GPIO6

GPX Serial 1 input (TTL)

GPX SPI MOSI

34 GPX_G7/Tx1/MISO I/O GPX GPIO7

GPX Serial 1 output (TTL)

GPX SPI MISO

35 GPX_G8/CS I/O GPX GPIO8

GPX SPI chip select

36 GPX_G9/SPI_EN I/O GPX GPIO9

GPX SPI Enable: Hold LOW during bootup to enable SPI on G5-G8

37-47 GND PWR -

5.5.3 Schematic

- 49/330 - ©2022

https://docs.inertialsense.com/datasheets/IG-2_schematic.pdf

Download PDF

5.5.5 Soldering

The IMX-5 can be reflow soldered. Reflow information can be found in the Reflow Information section of this manual.

5.5.6 Design Files

Open source hardware design files, libraries, and example projects for the IMX module are found at the

Inertial Sense Hardware Design repository hosted on GitHub. These include schematic and layout files for

printed circuit board designs, and 3D step models of the InertialSense products usable for CAD and circuit

board designs.

Reference Design Projects

The EVB-2, IG-1, and IG-2 circuit board projects serve as reference designs that illustrate implementation of the IMX PCB

module.

EVB-2 evaluation board

IG-1 module

IG-2 module

5.5.7 Related Parts

Part Manufacturer Manufacturer # Description

H1 JST GHR-14V-S 14 pin connector 1.25mm pitch for IMX I/O connection.

5.5.5 Soldering

- 50/330 - ©2022

https://docs.inertialsense.com/dimensions/IS-IG-2.0_Dimensions_and_Pinout.pdf
https://github.com/inertialsense/IS-hdw
https://github.com/inertialsense/IS-hdw/tree/main/Products/EVB-2
https://github.com/inertialsense/IS-hdw/tree/main/Products/IG-1
https://github.com/inertialsense/IS-hdw/tree/main/Products/IG-2

5.6 Hardware Integration: IK-1 (IMX5 or GPX1)

The Inertial Sense IK-1 is a breakout evaluation board for either the IMX-5 or GPX-1 multi-frequency GNSS receiver.

0.1" pitch header for convenient interface.

Interfaces with standard breadboard.

Onboard Micro USB connector

Onboard voltage regulation.

Dual U.FL connectors for GPX GNSS antennas.

5.6.1 Connecting Your Unit

For the purposes of basic evaluation, the easiest interface available on the IK-1 is by using a micro-USB cable. A cable included in

the evaluation kit. The cable provides power and communications with the installed module via USB virtual communications port.

5.6.2 Pinout

Module Pinout

•

•

•

•

•

5.6 Hardware Integration: IK-1 (IMX5 or GPX1)

- 51/330 - ©2022

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

TOP VIEW

5.6.2 Pinout

- 52/330 - ©2022

The IK-1 module pinout is as follows

5.6.2 Pinout

- 53/330 - ©2022

IK1 IMX GPX Name Type Description

1-3 11,21 11,13,15,31 GND Power Supply ground

4 - 20 G20/LNA-EN I/O GPIO20, GPX LNA enable

5 - 21 GNSS2_PPS O GNSS2 PPS time synchronization output

pulse (1Hz, 10% duty cycle)

6 1 1 USB_P I/O USB full-speed Positive Line. USB will be

supported in future firmware updates.

7 2 2 USB_N I/O USB full-speed Negative Line. USB will be

supported in future firmware updates.

8 3 3 VBKUP Power Backup supply voltage input (1.75V to

3.6V). Future firmware updates will use

voltage applied on this pin to backup GNSS

ephemeris, almanac, and other operating

parameters for a faster startup when VCC

is applied again. This pin MUST be

connected to a backup battery or VCC.

9 4 4 G1/Rx2/RxCAN/

SCL

I/O GPIO1

Serial 2 input (TTL)

Serial input pin from CAN transceiver
*

I2C SCL line

10 5 5 G2/Tx2/TxCAN/

SDA/STROBE

I/O GPIO2

Serial 2 output (TTL)

Serial output pin to CAN transceiver
*

I2C SDA line

Strobe time sync input

11 6 6 G6/Rx1/MOSI I/O GPIO6

Serial 1 input (TTL)

SPI MOSI

12 7 7 G7/Tx1/MISO I/O GPIO7

Serial 1 output (TTL)

SPI MISO

13 8 8 G8/CS/STROBE I/O GPIO8

SPI CS

Strobe time sync input

14 9 9 G5/SCLK/

STROBE

I/O GPIO5

SPI SCLK

Strobe time sync input

15 10 10 G9/nSPI_EN/

STROBE

/STROBE_OUT/

DRDY

I/O GPIO9

SPI Enable: Hold LOW during boot to

enable SPI on G5-G8

Strobe time sync input or output. SPI data

ready alternate location

17 12 22 nRESET I System reset on logic low. May be left

unconnected if not used.

18 13 23 G14/SWCLK I/O GPIO14

19 14 24 G13/DRDY/

XSDA

I/O GPIO13

SPI Data Ready

Alt I2C SDA

5.6.2 Pinout

- 54/330 - ©2022

5.6.3 Schematic

Download Schematic

5.6.4 Design Files

Open source hardware design files, libraries, and example projects for the IMX module are found at the

Inertial Sense Hardware Design repository hosted on GitHub. These include schematic and layout files for

printed circuit board designs, and 3D step models of the InertialSense products usable for CAD and circuit

board designs.

IK1 IMX GPX Name Type Description

20 15 25 G12/XSCL I/O GPIO12

Alt I2C SCL

21 16 26 G11/SWDIO I/O GPIO11

22 17 27 G10/

BOOT_MODE

I/O Leave unconnected. BOOT MODE used in

manufacturing. !!! WARNING !!! Asserting

a logic high (+3.3V) will cause the IMX to

reboot into ROM bootloader (DFU) mode.

23 18 28 G4/Rx0 I/O GPIO4

Serial 0 input (TTL)

24 19 29 G3/Tx0 I/O GPIO3

Serial 0 output (TTL)

25 20 30 GNSS1_PPS O GNSS1 PPS time synchronization output

pulse (1Hz, 10% duty cycle)

27 22 32 VCC Power 1.8V to 3.3V supply input.

28 - 38 G16/QDEC0.A I/O GPIO16

29 - 39 G17/QDEC0.B I/O GPIO17

30 - 40 VAUX Power Input supplies for the USB and VCC_RF

(GNSS antenna supply). Connect to +3.3V

(3.0V to 3.6V) to supply USB and VCC_RF.

Can be left floating if USB or VCC_RF are

not needed.

31 - 41 G18/QDEC1.A I/O GPIO18

32 - 42 G19/QDEC1.B I/O GPIO19

U.FL1 - 12 GNSS1_RF I GNSS1 antenna RF input. Use an active

antenna or LNA with a gain of 15-25dB.

Place the LNA as close to the antenna as

possible. Filtered 3.3V from VCC is injected

onto the pad to power active antennas

(power injection can be disabled in

software). Connect to ground with 5V-14V

TVS diode for ESD and surge projection

(e.g. Littlefuse PESD0402-140).

U.FL2 - 14 GNSS2_RF I GNSS2 antenna RF input. Same

requirements as GNSS1_RF

5.6.3 Schematic

- 55/330 - ©2022

https://docs.inertialsense.com/datasheets/IK-1_schematic.pdf
https://github.com/inertialsense/IS-hdw

Reference Design Projects

The EVB-2, IG-1, IG-2, and IK-1 circuit board projects serve as reference designs that illustrate implementation of the IMX PCB

module.

EVB-2 evaluation board

IG-1 module

IG-2 module

IK-1 module

5.6.5 Related Parts

Part Manufacturer Manufacturer # Description

5.6.5 Related Parts

- 56/330 - ©2022

https://github.com/inertialsense/IS-hdw/tree/main/Products/EVB-2
https://github.com/inertialsense/IS-hdw/tree/main/Products/IG-1
https://github.com/inertialsense/IS-hdw/tree/main/Products/IG-2
https://github.com/inertialsense/IS-hdw/tree/main/Products/IK-1

5.7 Hardware Design Files

The Inertial Sense hardware design files are available on our IS-hdw repository to facilitate product hardware development and

integration.

PCB Libraries - Schematic and layout files for printed circuit board designs.

Products - 3D models and resources for the IMX, Rugged, EVB, and products useful for CAD and circuit board designs.

•

•

5.7 Hardware Design Files

- 57/330 - ©2022

https://github.com/inertialsense/IS-hdw

5.8 Reflow Soldering

Use of "No Clean" soldering paste is recommended as it does not require cleaning after the soldering process. The following

examples of paste meet these criteria.

5.8.1 The following reflow profile is recommended for soldering:

Solder Details

Soldering Paste OM338 SAC405 / Nr.143714 (Cookson Electronics)

Allow Specification Sn 95.5/ Ag 4/ Cu 0.5 (95.5% Tin/ 4% Silver/ 0.5% Copper)

Melting temperatures 217 °C

Phase Name Recommended Details

Preheat

dT/dt 3°C/sec Preheat Temperature Rise Rate

T
s
MIN 150°C Preheat Minimum Temperature

T
s
MAX 200°C Preheat Maximum Temperature

t
s
Preheat 60 - 120 sec Time Spent Between Preheat MIN and Max temperatures

Reflow

T
L

217°C Reflow Liquidus temperatures

T
P

245°C Reflow Peak temperatures

t
L

40-60 sec Time Spent above Reflow Liquidus temperatures

Cooling

dT/dt 4°C/sec Maximum Cooling Temperature Fall Rate

5.8 Reflow Soldering

- 58/330 - ©2022

A convection soldering oven is highly recommended over an infrared type radiation oven as it allows precision control of the

temperature and all parts will be heated evenly.

The IMX should be located on the topside of a PCB during reflow to avoid falling off.

Care should be taken to not disturb the components on the IMX during reflow as the solder on the IMX will also reflow.

The part must not be soldered with a damp heat process.

Important

Warning

5.8.1 The following reflow profile is recommended for soldering:

- 59/330 - ©2022

6. IS Software

6.1 CLTool

6.1.1 Overview

The Inertial Sense CLTool is a command line utility that can be used to read and display data, update firmware, and log data from

Inertial Sense products. Additionally, CLTool serves as example source code that demonstrates integration of the Inertial Sense

SDK into your own source code. The CLTool can be compiled in Linux, Mac, Windows and embedded platforms.

6.1.2 Help Menu

Command line utility for communicating, logging, and updating firmware with Inertial Sense product line.

EXAMPLES

 cltool -c /dev/ttyS2 -did DID_INS_1 DID_GPS1_POS DID_PIMU # stream DID messages

 cltool -c /dev/ttyS2 -did 4 13 3 # stream same as line above

 cltool -c /dev/ttyS2 -did 3=5 # stream DID_PIMU at startupNavDtMs x 5

 cltool -c /dev/ttyS2 -presetPPD # stream post processing data (PPD) with INS2

 cltool -c /dev/ttyS2 -presetPPD -lon -lts=1 # stream PPD + INS2 data, logging, dir timestamp

 cltool -c /dev/ttyS2 -edit DID_FLASH_CONFIG # edit DID_FLASH_CONFIG message

 cltool -c /dev/ttyS2 -baud=115200 -did 5 13=10 # stream at 115200 bps, GPS streamed at 10x startupGPSDtMs

 cltool -c * -baud=921600 # 921600 bps baudrate on all serial ports

 cltool -rp logs/20170117_222549 # replay log files from a folder

 cltool -c /dev/ttyS2 -rover=RTCM3:192.168.1.100:7777:mount:user:password # Connect to RTK NTRIP base

EXAMPLES (Firmware Update)

 cltool -c /dev/ttyS2 -ufpkg fw/IS-firmware.fpkg

 cltool -c /dev/ttyS2 -uf fw/IS_IMX-5.hex -ub fw/IS_bootloader-STM32L4.hex -uv

OPTIONS (General)

 -baud=BAUDRATE Set serial port baudrate. Options: 115200, 230400, 460800, 921600 (default)

 -c DEVICE_PORT Select serial port. Set DEVICE_PORT to "*" for all ports or "*4" for only first four.

 -dboc Send stop-broadcast command `$STPB` on close.

 -h --help Display this help menu.

 -list-devices Discovers and prints a list of discovered Inertial Sense devices and connected ports.

 -lm Listen mode for ISB. Disables device verification (-vd) and does not send stop-broadcast command on start.

 -magRecal[n] Recalibrate magnetometers: 0=multi-axis, 1=single-axis

 -nmea=[s] Send NMEA message s with added checksum footer. Display rx messages. (`-nmea=ASCE,0,GxGGA,1`)

 -nmea Listen mode for NMEA message without sending stop-broadcast command `$STPB` at start.

 -q Quiet mode, no display.

 -raw-out Outputs all data in a human-readable raw format (used for debugging/learning the ISB protocol).

 -reset Issue software reset.

 -s Scroll displayed messages to show history.

 -stats Display statistics of data received.

 -survey=[s],[d] Survey-in and store base position to refLla: s=[2=3D, 3=float, 4=fix], d=durationSec

 -sysCmd=[c] Send DID_SYS_CMD c (see eSystemCommand) command then exit the program.

 -vd Disable device validation. Use to keep port(s) open even if device response is not received.

 -verbose[=n] Enable verbose event logging. Use optional '=n' to specify log level between 0 (errors only) and 99 (all events)

 -v Print version information.

OPTIONS (Special)

 -factoryReset Reset IMX flash config to factory defaults.

 -romBootloader Reboot into ROM bootloader mode. Requires power cycle and reloading bootloader and firmware.

OPTIONS (Event)

 -evf=[t],[po],[pr],[id] Sets which DID_EVENT's can be broadcast for debug purposes.

 target: t=[0=device, 1=device's GNSS1 port, 2=device's GNSS2 port],

 portMask: po=[0x80=currentPort, 0x08=USB port, 0x04=UART2, 0x02=UART1, 0x01=UART)],

 priorityLevel: pr=[Priority ID's to be enabled. See:eEventPriority for protocol EV_ID values].

 It is recommended to have a minimum level of 1 at all times to allow broadcast of critical errors.

 msgTypeIdMask: id=[Protocol ID's to be enabled. Mask together protocol EV_ID value (0x01 << EV_ID).

 See:eEventProtocol for protocol EV_ID values]. It is recommended to mask (0x01 << EVENT_MSG_TYPE_ID_ASCII)

 at all times to allow broadcast of critical errors.

OPTIONS (Firmware Update)

 -ufpkg FILEPATH Update firmware using firmware package file (.fpkg) at FILEPATH.

 -uf FILEPATH Update app firmware using .hex file FILEPATH. Add -baud=115200 for systems w/ baud limits.

 -ub FILEPATH Update bootloader using .bin file FILEPATH if version is old. Must be used with option -uf.

 -fb Force bootloader update regardless of the version.

 -uv Run verification after application firmware update.

OPTIONS (Message Streaming)

 -did [DID#<=PERIODMULT> DID#<=PERIODMULT> ...] Stream 1 or more datasets and display w/ compact view.

 -edit [DID#<=PERIODMULT>] Stream and edit 1 dataset.

 Each DID# can be the DID number or name and appended with <=PERIODMULT> to decrease message frequency.

 Message period = source period x PERIODMULT. PERIODMULT is 1 if not specified.

 Common DIDs: DID_INS_1, DID_INS_2, DID_INS_4, DID_PIMU, DID_IMU, DID_GPS1_POS,

 DID_GPS2_RTK_CMP_REL, DID_BAROMETER, DID_MAGNETOMETER, DID_FLASH_CONFIG (see data_sets.h for complete list)

 -dids Print list of all DID datasets

 -persistent Save current streams as persistent messages enabled on startup

 -presetPPD Send RMC preset to enable IMX post processing data (PPD) stream

6. IS Software

- 60/330 - ©2022

6.1.3 Compile & Run (Linux/Mac)

You must have cmake installed on your machine. To do this, download the cmake application at https://cmake.org/download/. Then,

using the command line, you will need to install cmake with either of the following commands depending on your platform:

Create build directory

Run cmake from within build directory

Compile using make

If necessary, add current user to the "dialout" group in order to read and write to the USB serial communication ports:

Run executable

 -presetINS Send RMC preset to enable INS data stream

 -presetGPXPPD Send RMC preset to enable GPX post processing data (PPD) stream

OPTIONS (Logging to file, disabled by default)

 -lon Enable logging

 -lt=TYPE Log type: raw (default), dat, sdat, kml or csv

 -lp PATH Log data to path (default: ./IS_logs)

 -lmb=MB File culling: Log drive usage limit in MB. (default: 0). `-lmb=0 -lms=0` disables file culling.

 -lms=PERCENT File culling: Log drive space limit in percent of total drive, 0.0 to 1.0. (default: 0.5)

 -lmf=BYTES Log max file size in bytes (default: 5242880)

 -lts=0 Log sub folder, 0 or blank for none, 1 for timestamp, else use as is

 -r Replay data log from default path

 -rp PATH Replay data log from PATH

 -rs=SPEED Replay data log at x SPEED. SPEED=0 runs as fast as possible.

OPTIONS (READ flash config)

 -imxFlashCfg # List all "keys" and "values" in IMX

 -gpxFlashCfg # List all "keys" and "values" in GPX

 "-imxFlashCfg=[key]|[key]|[key]" # List specific IMX values

 "-gpxFlashCfg=[key]|[key]|[key]" # List specific GPX values

OPTIONS (WRITE flash config)

 "-imxFlashCfg=[key]=[value]|[key]=[value]" # Set key / value pairs in IMX flash config.

 "-gpxFlashCfg=[key]=[value]|[key]=[value]" # Set key / value pairs in GPX flash config.

 # Surround with "quotes" when using pipe operator.

EXAMPLES

 cltool -c /dev/ttyS2 -imxFlashCfg # Read from device and print all keys and values

 cltool -c /dev/ttyS2 "-imxFlashCfg=insOffset[1]=1.2|=ser2BaudRate=115200" # Set multiple values

OPTIONS (RTK Rover / Base)

 -rover=[type]:[IP or URL]:[port]:[mountpoint]:[username]:[password]

 As a rover (client), receive RTK corrections. Examples:

 -rover=TCP:RTCM3:192.168.1.100:7777:mountpoint:username:password (NTRIP)

 -rover=TCP:RTCM3:192.168.1.100:7777

 -rover=TCP:UBLOX:192.168.1.100:7777

 -rover=SERIAL:RTCM3:/dev/ttyS2:57600 (port, baud rate)

 -base=[IP]:[port] As a Base (sever), send RTK corrections. Examples:

 -base=TCP::7777 (IP is optional)

 -base=TCP:192.168.1.43:7777

 -base=SERIAL:/dev/ttyS2:921600

1.

Mac:

sudo "/Applications/CMake.app/Contents.bin/cmake-gui" --install

Linux:

sudo apt-get install cmake

2.

cd cltool

mkdir build

3.

cd build

cmake ..

4.

make

5.

sudo usermod -a -G dialout $USER

sudo usermod -a -G plugdev $USER

(reboot computer)

6.

cd build

./cltool

6.1.3 Compile & Run (Linux/Mac)

- 61/330 - ©2022

https://cmake.org/download/

6.1.4 Compile & Run (Windows CMake CL)

Install CMake for Windows

Create build directory ```bash cd cltool mkdir build

Run cmake from within build directory

Compile

Run executable

6.1.5 Compile & Run (Windows CMake Visual Studio)

Windows Visual Studio supports CMake projects. Follow the instructions provided by Microsoft: https://learn.microsoft.com/en-

us/cpp/build/cmake-projects-in-visual-studio?view=msvc-170

6.1.6 Updating Firmware with CLTool

Updating using Firmware Package

Updating firmware using a firmware package file provides a simple method to update multiple devices in one process. This

include the ability to update an IMX-GPX module pair in one step. The cltool only needs know the file path of the firmware

package file and the serial port of the device to be updated. The file extension for a firmware package is .fpkg .

NOTE: Updating the IMX firmware using a firmware package currently not supported and will become available in a future

update.

The following is a specific example of using a firmware package file:

Updating using Single Firmware File (Legacy Mode)

The CLTool can be used to update device firmware with the following options. This is the legacy firmware update methods that

works only with the IMX-5.0 and earlier products (uINS-3, EVB-2, etc.).

The following is a specific example:

1.

2.

3.

cd build

cmake ..

4.

cmake --build .

5.

cd Release (or Debug depending on CMake configuration you selected)

cltool.exe

cltool -c DEVICE_PORT -ufpkg FILEPATH

cltool -c /dev/ttyACM0 -ufpkg IS-firmware_2.0.3_2024-03-18_213925.fpkg

cltool -c DEVICE_PORT -uf [FW_FILEPATH] -ub [BL_FILEPATH] -uv

Options Description

-c DEVICE_PORT Specifies the device serial or USB port (i.e. /dev/ttyACM0).

-uf

[FW_FILEPATH]

Specifies the application firmware file path.

-ub

[BL_FILEPATH]

(Optional) Specified the bootloader firmware file. The bootloader is only updated if the version of the file

provided is newer than the bootloader version currently on the device.

-uv (Optional) Run verification after application firmware update.

6.1.4 Compile & Run (Windows CMake CL)

- 62/330 - ©2022

https://learn.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/cmake-projects-in-visual-studio?view=msvc-170

Note: The firmware can only be updated at the following baud rates: 300000, 921600, 460800, 230400, 115200

6.1.7 Logging with CLTool

The CLTool can be used to log data to file with the following options:

Log File Types

The following is an example of enabling the logger with type raw and specifying the output directory:

6.1.8 Command Line Options

Navigate to the directory /cpp/SDK/cltool/build and run the CLTool with the help option, " -h "

to display the command line options

6.1.9 Command Line Options in MS Visual Studio

When using MS Visual Studio IDE, command line arguments can be supplied by right clicking the project in the solution explorer

and then selecting Configuration Properties -> Debugging -> Command Arguments (see image below).

cltool -c /dev/ttyS2 -uf fw/IS_IMX-5.hex -ub fw/IS_bootloader-STM32L4.hex -uv

cltool -c DEVICE_PORT -lon -lt=LOG_TYPE -lp DIRECTORY

Options Description

-lon Enable logging.

-lt=LOG_TYPE Specifies the log file type to be written. LOG_TYPE can be raw , dat , or csv .

-lp DIRECTORY (Optional) Specifies the path where log files will be written. When not specified, the default location will be

the current working directory.

Log

Type

Description

raw Binary file containing byte for byte data received over the serial ports. All packets remain in their native form.

Used for logging InertialSense binary (ISB), NMEA, RTCM3, uBlox UBX binary and SPARTN, and any other packet

formats. Recommended for logging all data formats and post processing.

dat Binary file containing InertialSense binary (ISB) DID data sets in "chunk" groups containing data in serial order as

they appear over the serial port. Default file format. Recommended for post processing.

csv Comma-Separated Values - Plain text file that uses specific structuring to arrange tabular data. Its basic format

involves separating each data field (or cell in a table) with a comma and each record (or row) is on a new line. This

simple format allows for ease in data import and export between programs that handle tabular data, such as

databases and spreadsheets.

./cltool -c /dev/ttyACM0 -lon -lt=raw -lp /media/usbdrive/data

./cltool -h

6.1.7 Logging with CLTool

- 63/330 - ©2022

6.1.9 Command Line Options in MS Visual Studio

- 64/330 - ©2022

6.2 EvalTool

6.2.1 Overview

The EvalTool (Evaluation Tool) is a desktop GUI application that allows you to explore and test functionality of the Inertial Sense

products in real-time. It has scrolling plots, 3D model representation, table views of all data, data logger, and firmware updating

interface for the IMX, uAHRS, or uIMU. The EvalTool can simultaneously interface with multiple Inertial Sense devices.

6.2.2 Download and Install

The EvalTool Windows desktop app installer (.exe) can be downloaded from the Inertial Sense releases page.

6.2.3 Getting Started

With a device connected to your computer:

Connect your INS to your computer using directions in the IS Hardware section of this guide corresponding to the correct model.

Open the Settings > Serial Ports tab.

Click the Find All button, or open the port to your device by checking the Open checkbox.

The status box in the Port column will turn green and the Link status bar will turn green while data is being received from the

device.

You can specify the serial port baud rate using the Baud Rate dropdown menu when using a serial interface like RS232.

1.

2.

3.

4.

5.

6.2 EvalTool

- 65/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/releases

DATA LOGGING STEPS

In order to log data from your INS device, follow the steps listed below:

Connected your device to the EvalTool and open the port.

Go to the Data Logs tab.

Enable the data that you would like collected in the Data Streams area:

Select one of the RMC Preset menu options. This automatically enables standard messages commonly used for logging. PPD (Post

Processed Data) is the recommended default.

Enable any of the DID messages listed below by checking the On checkbox and setting the Period Mult.

Configure and enable logging in the Data Log area:

The Open Folder button opens the log directory in a file explorer window where logs are saved.

The Format dropdown menu selects the output log file format (.raw .dat .csv .kml).

Press Log to start recording a new log.

The data you are currently recording will be shown in the “Log Summary” sub-tab.

When you are finished recording data, press “Disable”. Your data will be saved in the location shown in “Open Folder”.

6.2.4 Info Bar

The Info Bar can be seen from any tab and shows basic connection information for the unit selected.

Link Status - Shows Packets being Transmitted and Received. counts to 99 then resets to 0.

Error Message - Shows error messages for the selected unit. The kinds of messages vary from data packets lost to system had a

reset.

RTK Base Messages - The number in this field will increment as your rover unit continues to receive RTK messages from your base

station. Use this field as the main signifier that RTK messages are coming through.

Currently selected unit - The unit with the serial number shown here will have its live data shown on each tab in EvalTool.

1.

2.

3.

a.

b.

4.

a.

b.

c.

5.

6.

1.

2.

3.

4.

6.2.4 Info Bar

- 66/330 - ©2022

6.2.5 Update Firmware

Go to the Settings > Serial Port tab.

Open the Ports of the units you would like to update. If the units don't open up, you may have to change the baud rate.

Click Update Firmware.

Select the update type using the drop down menu:

1.

2.

3.

4.

Update Type Description

FwPkg (.fpkg) Batch firmware update method for updating multiple devices in one

process. The .fpkg file contains multiple firmware files and instructions

for sequencing firmware updates for all available devices. NOTE: IMX-5

firmware update is not yet supported but will be in a future update.

GPX-1 (.bin) GPX-1 firmware update.

IMX-5.0 (.hex) (Legacy mode) IMX-5.0 firmware update that used the legacy

InertialSense bootloader (ISB).

1. Select the firmware file by clicking on the ellipsis

(three dots) button next to the file name and

navigating to and opening the file.

1. For the IMX-5.0 update type, you can optionally

select the bootloader .bin file. The bootloader will

only be updated if the selected file is newer than

the bootloader on the connected unit.

1. Click Start.

1. Wait for the progress to reach 100% and click

Done.

6.2.5 Update Firmware

- 67/330 - ©2022

*Note: The firmware can only be updated at the following baud rates: 300000, 921600, 460800, 230400, 115200.

6.2.6 Tab Descriptions

INS Tab

Attitude Plot and Table - shows the Roll, Pitch, and Yaw values of the selected unit. Hover the cursor of the radio buttons to see

more descriptions.

Velocity Plot and Table - U,V,W velocities.

LLA Plot and Table - Tabular values and plot of Latitude, Longitude, and Altitude.

Simulation - Real-time, simulated image of the INS orientation.

GPS Summary - Strength of GPS signal and accuracy.

Mag Recal Button - Allows you to calibrate your units about either a single axis (for heavy, ground based vehicles) or multi-axes.

BIT (Built-In Test) Button - Runs a system of checks on your unit.

Link Messages - shows the performance information on connected units and displays error messages.

1.

2.

3.

4.

5.

6.

7.

8.

6.2.6 Tab Descriptions

- 68/330 - ©2022

Sensors Tab

Gyros Plot and Table - Gyroscopic data on the selected unit. Includes standard deviation.

Accelerometers Plot and Table - Accelerometer data on the selected unit. Includes standard deviation.

Magnetometers Plot and Table - Magnetometer data on the selected unit. Includes standard deviation.

Barometer Plot and Table - Barometric, temperature, and humidity data on the selected unit. Includes standard deviation.

1.

2.

3.

4.

6.2.6 Tab Descriptions

- 69/330 - ©2022

GPS Tab

GPS CNO Signal Strength - Bar graphs of each satellite being used in your solution and its strength in dBHz(CNO).

Position Accuracy Plot and Table - RTK mode and status. Includes number of satellites used in the RTK solution (max and mean).

Satellites Used Table - The GNSS ID for each satellite seen by your unit and the subsequent connection details.

1.

2.

3.

6.2.6 Tab Descriptions

- 70/330 - ©2022

Map Tab

Track Active - Tracks all units on window view.

Zoom to Fit - Zooms your window view around each unit being used.

Manual - Requires manual movement of the window view.

Location of Units - GPS location of each of your units. Shows RTK, GPS ublox, and INS solution.

1.

2.

3.

4.

6.2.6 Tab Descriptions

- 71/330 - ©2022

Data Sets Tab

List of DIDs (Data IDentifiers) - The data identifiers that you might need to view for measurements. See the User Manual (Binary

Protocol Data Sets) for a detailed description of frequently used DIDs.

List of Variables within DIDs - shows what is recorded in each DID in real-time.

1.

2.

6.2.6 Tab Descriptions

- 72/330 - ©2022

Data Logs

DATA STREAMS

This area allow users to enable streaming of various DIDs.

RMC Presets Button - Enable a group of data sets. PPD (post process data) is the preferred preset for post processing and debug

analysis.

Save Persistent Button - Save currently enabled data streams to automatically begin streaming after system restart. To clear

persistent streams, first stop streaming and then click Save Persistent.

Stop Streaming - Stops all data streams. Any streams previously saved as persistent will begin streaming at startup.

DATA LOG

Enable/Disable Button - Starts/stops a log of all currently streaming data and saves it to a sub-folder with the current time-stamp

within your "Logs" folder.

Open Folder Button - Opens the "Logs" folder where your previous logs are saved.

Format Dropdown - Select the file output type of the data log , such as .raw, .dat, .csv, or .kml.

1.

2.

3.

1.

2.

3.

6.2.6 Tab Descriptions

- 73/330 - ©2022

Summary Window - Shows the log directly path, the elapsed time the data log has been running, the total size of the log file, and a

list currently recording DIDs with corresponding dt (time between measurements).

File Conversion Utility - Enables you to convert the data log file type in a specified directory. (e.g. .dat to .csv)

Settings Tab

The Settings tab has 3 sub tabs and they are as follows:

Settings - Serial Ports Tab

Log Format Description

Raw packet

(.raw)

Binary file containing byte for byte data received over the serial ports. All packets remain in their native form.

Used for logging InertialSense binary (ISB), NMEA, RTCM3, uBlox UBX binary and SPARTN, and any other

packet formats. Recommended for logging all data formats and post processing.

Serial binary

(.dat)

Binary file containing InertialSense binary (ISB) DID data sets in "chunk" groups containing data in serial

order as they appear over the serial port. Default file format. Recommended for post processing.

Comma

separated

(.csv)

Plain text file that uses specific structuring to arrange tabular data. Its basic format involves separating each

data field (or cell in a table) with a comma and each record (or row) is on a new line. This simple format allows

for ease in data import and export between programs that handle tabular data, such as databases and

spreadsheets.

4.

5.

6.2.6 Tab Descriptions

- 74/330 - ©2022

Open All - Opens all of the ports shown.

Close All - Closes all of the ports shown.

Find Devices - Determines which peripherals into your computer are Inertial Sense units, and opens those ports while closing the

others.

Baud Rate - The rate at which data will be communicated over your data channel.

Update Firmware - Allows you to update your unit's firmware when an update is released from Inertial Sense.

Port Status - Shows a list of all connected comports and basic information for each of them. Clicking the check box opens the port.

Settings - General Tab

1.

2.

3.

4.

5.

6.

6.2.6 Tab Descriptions

- 75/330 - ©2022

Software Reset - Allows the user to issue a reset to the unit. has options for all open comports and only the currently connected

unit.

Zero Motion - Allows the user to informs the EKF that the system is stationary on the ground and is used to aid in IMU bias

estimation which can reduce drift in the INS attitude.

DID_Flash_Config - Gives the user option to disable or enable different features normally found in the "Data Sets" tab. For more

information about the Flash Config see Data sets.

Settings - GPS Tab

1.

2.

3.

6.2.6 Tab Descriptions

- 76/330 - ©2022

IMX Parameters - Shows flash config settings commonly used when setting up RTK units

Status - Shows information important to using RTK.

Rover/Base Mode - Used in setup of RTK Rovers and RTK base Stations.

Message Window - Shows confirmation messages and Flash Config writes.

About Tab

The about tab shows version information for the EvalTool and connected device. It also provides helpful links to online

documentation and software release information.

1.

2.

3.

4.

6.2.6 Tab Descriptions

- 77/330 - ©2022

6.2.6 Tab Descriptions

- 78/330 - ©2022

6.3 SDK

Overview

The Inertial Sense open source software development kit (SDK) provides quick integration for communication with the Inertial

Sense product line, including the µIMU, µAHRS, and µINS. It includes data logger, math libraries, and serial port interface for

Linux and Windows environments.

6.3.1 C vs. C++ Implementation

The Inertial Sense SDK provides both C and C++ programming language implementation. The following compares differences

between these implementations.

C

Easier implementation

Light weight

Smaller code size

Minimal subset of SDK files

Recommended for smaller projects that require lower memory usage.

SDK files: ISComm.c

C++

Object oriented device representation

Fully integrated support for:

Commutations: single or multiple data type callback functions.

Serial port handling included

Datalogging

Firmware update (bootloader)

Recommended for typical to advanced C++ applications and production level integration.

SDK files: InertialSense.cpp

6.3.2 Installing and Configuring Visual Studio

The SDK example projects can be conveniently compiled using gcc with cmake or Visual Studio. The following sections outline

how to setup Visual Studio for use with the SDK example projects.

Installing

The SDK example projects can be compiled using the Community (free) version of Visual Studio. Windows SDK should be

installed in addition to Visual Studio, as an added option in the Visual Studio installer or using the separate Windows SDK

installer.

Visual Studio

Windows SDK - Can be installed using option in Visual Studio Installer or using separate Windows SDK installer.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6.3 SDK

- 79/330 - ©2022

https://visualstudio.microsoft.com/downloads/
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

Configuring

When compiling an Inertial Sense SDK example project in Visual Studio, the currently installed version of Windows SDK must be

selected in the project properties, as illustrated below:

Project properties > General > Windows SDK Version > [Currently Installed Version]

6.3.3 SDK Example Projects Overview

6.3.4

Example Project Language Description

NMEA

Communications

C How to use SDK for NMEA NMEA communications.

Binary

Communications

C How to use SDK for binary communications.

Fimrware Update C How to use bootloader for embedded firmware update.

Data Logger C++ How to use SDK data logging.

CLTool C++ Open source project illustrating how to use the InertialSense C++ class. It

combines all SDK capabilities including serial communications, data logging to

file, and embedded firmware update.

6.3.3 SDK Example Projects Overview

- 80/330 - ©2022

6.4 Log Inspector

6.4.1 Overview

Log Inspector is an open source python utility for viewing and scrubbing InertialSense data log (.dat) files.

6.4.2 Getting Started

Log Inspector can open and plot .dat PPD log files. The lower left hand corner file browser allows you to enter a "working

directory" in the directory field. The whole directory containing the desired is selected from the directory tree. Once the log is

opened, the buttons in the upper left hand corner are used to graph various data sets.

6.4 Log Inspector

- 81/330 - ©2022

6.4.3 Standard data sets

POS NED Map - Used to plot INS position data in NED frame.

POS NED - INS position in NED frame.

POS LLA - INS and GNSS position in LLA.

GPS LLA - GNSS LLA position.

Vel NED - Velocity in NED frame.

Vel UVW - Velocity in body frame.

Attitude - Euler angle attitude in degrees.

Heading - Heading data from magnetometer, INS, and RTK.

INS Status - Plots of status flags vs time.

HDW Status - plots of hardware status flags vs time.

6.4.4 Building

Note - logInspector requires Python 3.

Navigate to the Inertial Sense SDK directory

Create a config file.

Add the following or similar contents to this file.

6.4.5 Running

To run logInspector open a shell and navigate to the logInspector directory and enter the following commands:

6.4.6 Other Directory Contents

The logInspector also contains some example implementations for dealing with log files directly in python.

logReader

This python module is responsible for loading the log file through a pybind11 interface. All the data in the log is eventually put in

the log.data array.

•

•

•

•

•

•

•

•

•

•

pip3 install logInspector/ # (this will return an error message, but will install all the dependencies you need)

cd logInspector

python3 setup.py build_ext --inplace

C:\Users\[USER]\Documents\Inertial_Sense\log_inspector.yaml

directory: C:\Users\<username>\Documents\Inertial_Sense\Logs\20181116_SKI\morning_run_1\back\20181116_175352

logs_directory: C:\Users\<username>\Documents\Inertial_Sense\Logs

serials: ["ALL"]

python3 logInspector.py

6.4.3 Standard data sets

- 82/330 - ©2022

logPlotter

This python module is responsible for creating plots. Adding new plots is easy, data is directly accessed using the member

logReader object.

logInspector

A pyqt5 GUI which uses logPlotter to generate plots.

6.4.6 Other Directory Contents

- 83/330 - ©2022

7. Communication Protocols

7.1 Protocol Overview

The Inertial Sense products support binary and NMEA protocol for communication.

7.1.1 Binary vs. NMEA

The following table compares the differences and advantages between the binary and NMEA protocols.

NMEA Protocol Binary Protocol

Data Efficient No. Numbers must be converted to IEEE float

and integers for application. Data occupies

more memory.

Numbers are in floating point and integer binary

format used in computers. Data occupies less

memory.

Human

Readable

Yes No

Complexity Packet are easier to parse. Packet encoding, decoding, and parsing are

MORE complicated. Using SDK is recommended.

SDK Support Yes, less Yes, more

Data Access Limited to sensor and INS output. Comprehensive access to all data and

configuration settings.

Recommended

Use

Rapid prototypes and simple projects. Devices

supporting NMEA.

Moderate to advanced applications.

Apps and

Examples

NMEA Communications Example EvalTool, CLTool, Binary Communications

Example, Fimrware Update Example, Data

Logger Example

7. Communication Protocols

- 84/330 - ©2022

7.2 Data Sets (DIDs)

7.2.1 Data Sets (DIDs)

Data Sets in the form of C structures are available through binary protocol and provide access to system configuration and

output data. The data sets are defined in SDK/src/data_sets.h of the InertialSense SDK.

INS / AHRS Output

DID_INS_1

INS output: euler rotation w/ respect to NED, NED position from reference LLA.

ins_1_t

DID_INS_2

INS output: quaternion rotation w/ respect to NED, ellipsoid altitude

ins_2_t

DID_INS_3

Inertial navigation data with quaternion NED to body rotation and ECEF position.

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeek double GPS time of week (since Sunday morning) in seconds

insStatus uint32_t INS status flags (eInsStatusFlags). Copy of DID_SYS_PARAMS.insStatus

hdwStatus uint32_t Hardware status flags (eHdwStatusFlags). Copy of DID_SYS_PARAMS.hdwStatus

theta float[3] Euler angles: roll, pitch, yaw in radians with respect to NED

uvw float[3] Velocity U, V, W in meters per second. Convert to NED velocity using

"vectorBodyToReference(uvw, theta, vel_ned)".

lla double[3] WGS84 latitude, longitude, height above ellipsoid (degrees,degrees,meters)

ned float[3] North, east and down (meters) offset from reference latitude, longitude, and altitude to

current latitude, longitude, and altitude

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeek double GPS time of week (since Sunday morning) in seconds

insStatus uint32_t INS status flags (eInsStatusFlags). Copy of DID_SYS_PARAMS.insStatus

hdwStatus uint32_t Hardware status flags (eHdwStatusFlags). Copy of DID_SYS_PARAMS.hdwStatus

qn2b float[4] Quaternion body rotation with respect to NED: W, X, Y, Z

uvw float[3] Velocity U, V, W in meters per second. Convert to NED velocity using

"quatRot(vel_ned, qn2b, uvw)".

lla double[3] WGS84 latitude, longitude, height above ellipsoid in meters (not MSL)

7.2 Data Sets (DIDs)

- 85/330 - ©2022

ins_3_t

DID_INS_4

INS output: quaternion rotation w/ respect to ECEF, ECEF position.

ins_4_t

Inertial Measurement Unit (IMU)

DID_IMU

Inertial measurement unit data down-sampled from IMU rate (DID_FLASH_CONFIG.startupImuDtMs (1KHz)) to navigation

update rate (DID_FLASH_CONFIG.startupNavDtMs) as an anti-aliasing filter to reduce noise and preserve accuracy. Minimum

data period is DID_FLASH_CONFIG.startupNavDtMs (1KHz max).

imu_t

DID_IMU_RAW

IMU data averaged from DID_IMU3_RAW. Use this IMU data for output data rates faster than

DID_FLASH_CONFIG.startupNavDtMs. Otherwise we recommend use of DID_IMU or DID_PIMU as they are oversampled and

contain less noise.

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeek double GPS time of week (since Sunday morning) in seconds

insStatus uint32_t INS status flags (eInsStatusFlags). Copy of DID_SYS_PARAMS.insStatus

hdwStatus uint32_t Hardware status flags (eHdwStatusFlags). Copy of DID_SYS_PARAMS.hdwStatus

qn2b float[4] Quaternion body rotation with respect to NED: W, X, Y, Z

uvw float[3] Velocity U, V, W in meters per second. Convert to NED velocity using

"quatRot(vel_ned, qn2b, uvw)".

lla double[3] WGS84 latitude, longitude, height above ellipsoid in meters (not MSL)

msl float height above mean sea level (MSL) in meters

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeek double GPS time of week (since Sunday morning) in seconds

insStatus uint32_t INS status flags (eInsStatusFlags). Copy of DID_SYS_PARAMS.insStatus

hdwStatus uint32_t Hardware status flags (eHdwStatusFlags). Copy of DID_SYS_PARAMS.hdwStatus

qe2b float[4] Quaternion body rotation with respect to ECEF: W, X, Y, Z

ve float[3] Velocity in ECEF (earth-centered earth-fixed) frame in meters per second

ecef double[3] Position in ECEF (earth-centered earth-fixed) frame in meters

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

status uint32_t IMU Status (eImuStatus)

I imus_t Inertial Measurement Unit (IMU)

7.2.1 Data Sets (DIDs)

- 86/330 - ©2022

imu_t

DID_PIMU

Preintegrated IMU (a.k.a. Coning and Sculling integral) in body/IMU frame. Updated at IMU rate. Also know as delta theta delta

velocity, or preintegrated IMU (PIMU). For clarification, the name "Preintegrated IMU" or "PIMU" throughout our User Manual.

This data is integrated from the IMU data at the IMU update rate (startupImuDtMs, default 1ms). The PIMU integration period

(dt) and INS NAV update data period are the same. DID_FLASH_CONFIG.startupNavDtMs sets the NAV output period at startup.

The minimum NAV update and output periods are found here: https://docs.inertialsense.com/user-manual/application-config/

imu_ins_gnss_configuration/#navigation-update-and-output-periods. If a faster output data rate for IMU is desired,

DID_IMU_RAW can be used instead. PIMU data acts as a form of compression, adding the benefit of higher integration rates for

slower output data rates, preserving the IMU data without adding filter delay and addresses antialiasing. It is most effective for

systems that have higher dynamics and lower communications data rates. The minimum data period is

DID_FLASH_CONFIG.startupImuDtMs or 4, whichever is larger (250Hz max). The PIMU value can be converted to IMU by

dividing PIMU by dt (i.e. IMU = PIMU / dt)

pimu_t

Sensor Output

DID_BAROMETER

Barometric pressure sensor data

barometer_t

DID_MAGNETOMETER

Magnetometer sensor output

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

status uint32_t IMU Status (eImuStatus)

I imus_t Inertial Measurement Unit (IMU)

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding gps.towOffset

dt float Integral period in seconds for delta theta and delta velocity. This is configured using

DID_FLASH_CONFIG.startupNavDtMs.

status uint32_t IMU Status (eImuStatus)

theta float[3] IMU delta theta (gyroscope {p,q,r} integral) in radians in sensor frame

vel float[3] IMU delta velocity (accelerometer {x,y,z} integral) in m/s in sensor frame

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

bar float Barometric pressure in kilopascals

mslBar float MSL altitude from barometric pressure sensor in meters

barTemp float Temperature of barometric pressure sensor in Celsius

humidity float Relative humidity as a percent (%rH). Range is 0% - 100%

7.2.1 Data Sets (DIDs)

- 87/330 - ©2022

https://docs.inertialsense.com/user-manual/application-config/imu_ins_gnss_configuration/#navigation-update-and-output-periods
https://docs.inertialsense.com/user-manual/application-config/imu_ins_gnss_configuration/#navigation-update-and-output-periods

magnetometer_t

DID_MAG_CAL

Magnetometer calibration

mag_cal_t

DID_SYS_SENSORS

System sensor information

sys_sensors_t

GPS / GNSS

DID_GPS1_POS

GPS 1 position data. This comes from DID_GPS1_RCVR_POS or DID_GPS1_RTK_POS, depending on whichever is more accurate.

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

mag float[3] Magnetometers

Field Type Description

state uint32_t Mag recalibration state. COMMANDS: 1=multi-axis, 2=single-axis, 101=abort, STATUS:

200=running, 201=done (see eMagCalState)

progress float Mag recalibration progress indicator: 0-100 %

declination float Magnetic declination estimate

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding gps.towOffset

temp float Temperature in Celsius

pqr float[3] Gyros in radians / second

acc float[3] Accelerometers in meters / second squared

mag float[3] Magnetometers

bar float Barometric pressure in kilopascals

barTemp float Temperature of barometric pressure sensor in Celsius

mslBar float MSL altitude from barometric pressure sensor in meters

humidity float Relative humidity as a percent (%rH). Range is 0% - 100%

vin float EVB system input voltage in volts. uINS pin 5 (G2/AN2). Use 10K/1K resistor divider

between Vin and GND.

ana1 float ADC analog input in volts. uINS pin 4, (G1/AN1).

ana3 float ADC analog input in volts. uINS pin 19 (G3/AN3).

ana4 float ADC analog input in volts. uINS pin 20 (G4/AN4).

7.2.1 Data Sets (DIDs)

- 88/330 - ©2022

gps_pos_t

DID_GPS1_RCVR_POS

GPS 1 position data from GNSS receiver.

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags, NMEA input flag

ecef double[3] Position in ECEF {x,y,z} (m)

lla double[3] Position - WGS84 latitude, longitude, height above ellipsoid (not MSL) (degrees, m)

hMSL float Height above mean sea level (MSL) in meters

hAcc float Horizontal accuracy in meters

vAcc float Vertical accuracy in meters

pDop float Position dilution of precision (unitless)

cnoMean float Average of all non-zero satellite carrier to noise ratios (signal strengths) in dBHz

towOffset double Time sync offset between local time since boot up to GPS time of week in seconds. Add

this to IMU and sensor time to get GPS time of week in seconds.

leapS uint8_t GPS leap second (GPS-UTC) offset. Receiver's best knowledge of the leap seconds

offset from UTC to GPS time. Subtract from GPS time of week to get UTC time of week.

(18 seconds as of December 31, 2016)

satsUsed uint8_t Number of satellites used

cnoMeanSigma uint8_t Standard deviation of cnoMean over past 5 seconds (dBHz x10)

reserved uint8_t Reserved for future use

7.2.1 Data Sets (DIDs)

- 89/330 - ©2022

gps_pos_t

DID_GPS1_RTK_POS

GPS RTK position data

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags, NMEA input flag

ecef double[3] Position in ECEF {x,y,z} (m)

lla double[3] Position - WGS84 latitude, longitude, height above ellipsoid (not MSL) (degrees, m)

hMSL float Height above mean sea level (MSL) in meters

hAcc float Horizontal accuracy in meters

vAcc float Vertical accuracy in meters

pDop float Position dilution of precision (unitless)

cnoMean float Average of all non-zero satellite carrier to noise ratios (signal strengths) in dBHz

towOffset double Time sync offset between local time since boot up to GPS time of week in seconds. Add

this to IMU and sensor time to get GPS time of week in seconds.

leapS uint8_t GPS leap second (GPS-UTC) offset. Receiver's best knowledge of the leap seconds

offset from UTC to GPS time. Subtract from GPS time of week to get UTC time of week.

(18 seconds as of December 31, 2016)

satsUsed uint8_t Number of satellites used

cnoMeanSigma uint8_t Standard deviation of cnoMean over past 5 seconds (dBHz x10)

reserved uint8_t Reserved for future use

7.2.1 Data Sets (DIDs)

- 90/330 - ©2022

gps_pos_t

DID_GPS1_RTK_POS_MISC

RTK precision position related data.

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags, NMEA input flag

ecef double[3] Position in ECEF {x,y,z} (m)

lla double[3] Position - WGS84 latitude, longitude, height above ellipsoid (not MSL) (degrees, m)

hMSL float Height above mean sea level (MSL) in meters

hAcc float Horizontal accuracy in meters

vAcc float Vertical accuracy in meters

pDop float Position dilution of precision (unitless)

cnoMean float Average of all non-zero satellite carrier to noise ratios (signal strengths) in dBHz

towOffset double Time sync offset between local time since boot up to GPS time of week in seconds. Add

this to IMU and sensor time to get GPS time of week in seconds.

leapS uint8_t GPS leap second (GPS-UTC) offset. Receiver's best knowledge of the leap seconds

offset from UTC to GPS time. Subtract from GPS time of week to get UTC time of week.

(18 seconds as of December 31, 2016)

satsUsed uint8_t Number of satellites used

cnoMeanSigma uint8_t Standard deviation of cnoMean over past 5 seconds (dBHz x10)

reserved uint8_t Reserved for future use

7.2.1 Data Sets (DIDs)

- 91/330 - ©2022

gps_rtk_misc_t

7.2.1 Data Sets (DIDs)

- 92/330 - ©2022

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

accuracyPos float[3] Accuracy - estimated standard deviations of the solution assuming a

priori error model and error parameters by the positioning options. []:

standard deviations {ECEF - x,y,z} or {north, east, down} (meters)

accuracyCov float[3] Accuracy - estimated standard deviations of the solution assuming a

priori error model and error parameters by the positioning options. []:

Absolute value of means square root of estimated covariance NE, EU,

UN

arThreshold float Ambiguity resolution threshold for validation

gDop float Geometric dilution of precision (meters)

hDop float Horizontal dilution of precision (meters)

vDop float Vertical dilution of precision (meters)

baseLla double[3] Base Position - latitude, longitude, height (degrees, meters)

cycleSlipCount uint32_t Cycle slip counter

roverGpsObservationCount uint32_t Rover gps observation element counter

baseGpsObservationCount uint32_t Base station gps observation element counter

roverGlonassObservationCount uint32_t Rover glonass observation element counter

baseGlonassObservationCount uint32_t Base station glonass observation element counter

roverGalileoObservationCount uint32_t Rover galileo observation element counter

baseGalileoObservationCount uint32_t Base station galileo observation element counter

roverBeidouObservationCount uint32_t Rover beidou observation element counter

baseBeidouObservationCount uint32_t Base station beidou observation element counter

roverQzsObservationCount uint32_t Rover qzs observation element counter

baseQzsObservationCount uint32_t Base station qzs observation element counter

roverGpsEphemerisCount uint32_t Rover gps ephemeris element counter

baseGpsEphemerisCount uint32_t Base station gps ephemeris element counter

roverGlonassEphemerisCount uint32_t Rover glonass ephemeris element counter

baseGlonassEphemerisCount uint32_t Base station glonass ephemeris element counter

roverGalileoEphemerisCount uint32_t Rover galileo ephemeris element counter

baseGalileoEphemerisCount uint32_t Base station galileo ephemeris element counter

roverBeidouEphemerisCount uint32_t Rover beidou ephemeris element counter

baseBeidouEphemerisCount uint32_t Base station beidou ephemeris element counter

roverQzsEphemerisCount uint32_t Rover qzs ephemeris element counter

baseQzsEphemerisCount uint32_t Base station qzs ephemeris element counter

roverSbasCount uint32_t Rover sbas element counter

baseSbasCount uint32_t Base station sbas element counter

baseAntennaCount uint32_t Base station antenna position element counter

7.2.1 Data Sets (DIDs)

- 93/330 - ©2022

DID_GPS1_RTK_POS_REL

RTK precision position base to rover relative info.

gps_rtk_rel_t

DID_GPS1_SAT

GPS 1 GNSS satellite information: sat identifiers, carrier to noise ratio, elevation and azimuth angles, pseudo range residual.

gps_sat_t

DID_GPS1_VEL

GPS 1 velocity data

gps_vel_t

Field Type Description

ionUtcAlmCount uint32_t Ionosphere model, utc and almanac count

correctionChecksumFailures uint32_t Number of checksum failures from received corrections

timeToFirstFixMs uint32_t Time to first RTK fix.

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

differentialAge float Age of differential (seconds)

arRatio float Ambiguity resolution ratio factor for validation

baseToRoverVector float[3] Vector from base to rover (m) in ECEF - If Compassing enabled, this is the 3-

vector from antenna 2 to antenna 1

baseToRoverDistance float Distance from base to rover (m)

baseToRoverHeading float Angle from north to baseToRoverVector in local tangent plane. (rad)

baseToRoverHeadingAcc float Accuracy of baseToRoverHeading. (rad)

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used,

[0x0000xx00] fix type, [0x00xx0000] status flags, NMEA input flag

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

numSats uint32_t Number of satellites in the sky

sat gps_sat_sv_t[50] Satellite information list

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

vel float[3] GPS Velocity. Velocity is in ECEF {vx,vy,vz} (m/s) if status bit

GPS_STATUS_FLAGS_GPS_NMEA_DATA (0x00008000) is NOT set. Velocity is in local

tangent plane with no vertical velocity {vNorth, vEast, 0} (m/s) if status bit

GPS_STATUS_FLAGS_GPS_NMEA_DATA (0x00008000) is set.

sAcc float Speed accuracy in meters / second

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags, NMEA input flag

7.2.1 Data Sets (DIDs)

- 94/330 - ©2022

DID_GPS1_VERSION

GPS 1 version info

gps_version_t

DID_GPS2_POS

GPS 2 position data

gps_pos_t

DID_GPS2_RTK_CMP_MISC

RTK Dual GNSS RTK compassing related data.

Field Type Description

swVersion uint8_t[30] Software version

hwVersion uint8_t[10] Hardware version

extension gps_extension_ver_t[6] Extension 30 bytes array description

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags, NMEA input flag

ecef double[3] Position in ECEF {x,y,z} (m)

lla double[3] Position - WGS84 latitude, longitude, height above ellipsoid (not MSL) (degrees, m)

hMSL float Height above mean sea level (MSL) in meters

hAcc float Horizontal accuracy in meters

vAcc float Vertical accuracy in meters

pDop float Position dilution of precision (unitless)

cnoMean float Average of all non-zero satellite carrier to noise ratios (signal strengths) in dBHz

towOffset double Time sync offset between local time since boot up to GPS time of week in seconds. Add

this to IMU and sensor time to get GPS time of week in seconds.

leapS uint8_t GPS leap second (GPS-UTC) offset. Receiver's best knowledge of the leap seconds

offset from UTC to GPS time. Subtract from GPS time of week to get UTC time of week.

(18 seconds as of December 31, 2016)

satsUsed uint8_t Number of satellites used

cnoMeanSigma uint8_t Standard deviation of cnoMean over past 5 seconds (dBHz x10)

reserved uint8_t Reserved for future use

7.2.1 Data Sets (DIDs)

- 95/330 - ©2022

gps_rtk_misc_t

7.2.1 Data Sets (DIDs)

- 96/330 - ©2022

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

accuracyPos float[3] Accuracy - estimated standard deviations of the solution assuming a

priori error model and error parameters by the positioning options. []:

standard deviations {ECEF - x,y,z} or {north, east, down} (meters)

accuracyCov float[3] Accuracy - estimated standard deviations of the solution assuming a

priori error model and error parameters by the positioning options. []:

Absolute value of means square root of estimated covariance NE, EU,

UN

arThreshold float Ambiguity resolution threshold for validation

gDop float Geometric dilution of precision (meters)

hDop float Horizontal dilution of precision (meters)

vDop float Vertical dilution of precision (meters)

baseLla double[3] Base Position - latitude, longitude, height (degrees, meters)

cycleSlipCount uint32_t Cycle slip counter

roverGpsObservationCount uint32_t Rover gps observation element counter

baseGpsObservationCount uint32_t Base station gps observation element counter

roverGlonassObservationCount uint32_t Rover glonass observation element counter

baseGlonassObservationCount uint32_t Base station glonass observation element counter

roverGalileoObservationCount uint32_t Rover galileo observation element counter

baseGalileoObservationCount uint32_t Base station galileo observation element counter

roverBeidouObservationCount uint32_t Rover beidou observation element counter

baseBeidouObservationCount uint32_t Base station beidou observation element counter

roverQzsObservationCount uint32_t Rover qzs observation element counter

baseQzsObservationCount uint32_t Base station qzs observation element counter

roverGpsEphemerisCount uint32_t Rover gps ephemeris element counter

baseGpsEphemerisCount uint32_t Base station gps ephemeris element counter

roverGlonassEphemerisCount uint32_t Rover glonass ephemeris element counter

baseGlonassEphemerisCount uint32_t Base station glonass ephemeris element counter

roverGalileoEphemerisCount uint32_t Rover galileo ephemeris element counter

baseGalileoEphemerisCount uint32_t Base station galileo ephemeris element counter

roverBeidouEphemerisCount uint32_t Rover beidou ephemeris element counter

baseBeidouEphemerisCount uint32_t Base station beidou ephemeris element counter

roverQzsEphemerisCount uint32_t Rover qzs ephemeris element counter

baseQzsEphemerisCount uint32_t Base station qzs ephemeris element counter

roverSbasCount uint32_t Rover sbas element counter

baseSbasCount uint32_t Base station sbas element counter

baseAntennaCount uint32_t Base station antenna position element counter

7.2.1 Data Sets (DIDs)

- 97/330 - ©2022

DID_GPS2_RTK_CMP_REL

Dual GNSS RTK compassing / moving base to rover (GPS 1 to GPS 2) relative info.

gps_rtk_rel_t

DID_GPS2_SAT

GPS 2 GNSS satellite information: sat identifiers, carrier to noise ratio, elevation and azimuth angles, pseudo range residual.

gps_sat_t

DID_GPS2_VEL

GPS 2 velocity data

gps_vel_t

Field Type Description

ionUtcAlmCount uint32_t Ionosphere model, utc and almanac count

correctionChecksumFailures uint32_t Number of checksum failures from received corrections

timeToFirstFixMs uint32_t Time to first RTK fix.

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

differentialAge float Age of differential (seconds)

arRatio float Ambiguity resolution ratio factor for validation

baseToRoverVector float[3] Vector from base to rover (m) in ECEF - If Compassing enabled, this is the 3-

vector from antenna 2 to antenna 1

baseToRoverDistance float Distance from base to rover (m)

baseToRoverHeading float Angle from north to baseToRoverVector in local tangent plane. (rad)

baseToRoverHeadingAcc float Accuracy of baseToRoverHeading. (rad)

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used,

[0x0000xx00] fix type, [0x00xx0000] status flags, NMEA input flag

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

numSats uint32_t Number of satellites in the sky

sat gps_sat_sv_t[50] Satellite information list

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

vel float[3] GPS Velocity. Velocity is in ECEF {vx,vy,vz} (m/s) if status bit

GPS_STATUS_FLAGS_GPS_NMEA_DATA (0x00008000) is NOT set. Velocity is in local

tangent plane with no vertical velocity {vNorth, vEast, 0} (m/s) if status bit

GPS_STATUS_FLAGS_GPS_NMEA_DATA (0x00008000) is set.

sAcc float Speed accuracy in meters / second

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags, NMEA input flag

7.2.1 Data Sets (DIDs)

- 98/330 - ©2022

DID_GPS2_VERSION

GPS 2 version info

gps_version_t

DID_GPS_RTK_OPT

RTK options - requires little endian CPU.

Field Type Description

swVersion uint8_t[30] Software version

hwVersion uint8_t[10] Hardware version

extension gps_extension_ver_t[6] Extension 30 bytes array description

7.2.1 Data Sets (DIDs)

- 99/330 - ©2022

gps_rtk_opt_t

7.2.1 Data Sets (DIDs)

- 100/330 - ©2022

Field Type Description

mode int32_t positioning mode (PMODE_???)

soltype int32_t solution type (0:forward,1:backward,2:combined)

nf int32_t number of frequencies (1:L1,2:L1+L2,3:L1+L2+L5)

navsys int32_t navigation systems

elmin double elevation mask angle (rad)

snrmin int32_t Min snr to consider satellite for rtk

snrrange int32_t AR mode (0:off,1:continuous,2:instantaneous,3:fix and hold,4:ppp-ar)

modear int32_t GLONASS AR mode (0:off,1:on,2:auto cal,3:ext cal)

glomodear int32_t GPS AR mode (0:off,1:on)

gpsmodear int32_t SBAS AR mode (0:off,1:on)

sbsmodear int32_t BeiDou AR mode (0:off,1:on)

bdsmodear int32_t AR filtering to reject bad sats (0:off,1:on)

arfilter int32_t obs outage count to reset bias

maxout int32_t reject count to reset bias

maxrej int32_t min lock count to fix ambiguity

minlock int32_t min sats to fix integer ambiguities

minfixsats int32_t min sats to hold integer ambiguities

minholdsats int32_t min sats to drop sats in AR

mindropsats int32_t use stdev estimates from receiver to adjust measurement variances

rcvstds int32_t min fix count to hold ambiguity

minfix int32_t max iteration to resolve ambiguity

armaxiter int32_t dynamics model (0:none,1:velociy,2:accel)

dynamics int32_t number of filter iteration

niter int32_t interpolate reference obs (for post mission)

intpref int32_t rover position for fixed mode

rovpos int32_t base position for relative mode

refpos int32_t code/phase error ratio

eratio double[] measurement error factor

err double[5] initial-state std [0]bias,[1]iono [2]trop

std double[3] process-noise std [0]bias,[1]iono [2]trop [3]acch [4]accv [5] pos

prn double[6] satellite clock stability (sec/sec)

sclkstab double AR validation threshold

thresar double[8] elevation mask of AR for rising satellite (rad)

elmaskar double elevation mask to hold ambiguity (rad)

elmaskhold double slip threshold of geometry-free phase (m)

7.2.1 Data Sets (DIDs)

- 101/330 - ©2022

GPX

DID_GPX_DEV_INFO

GPX device information

Field Type Description

thresslip double variance for fix-and-hold pseudo measurements (cycle^2)

thresdop double gain used for GLO and SBAS sats to adjust ambiguity

varholdamb double max difference of time (sec)

gainholdamb double reset sat biases after this long trying to get fix if not acquired

maxtdiff double reject thresholds of NIS

fix_reset_base_msgs int reject threshold of gdop

maxinno double[2] baseline length constraint {const,sigma before fix, sigma after fix} (m)

maxnis_lo double maximum error wrt ubx position (triggers reset if more than this far) (m)

maxnis_hi double rover position for fixed mode {x,y,z} (ecef) (m)

maxgdop double base position for relative mode {x,y,z} (ecef) (m)

baseline double[3] max averaging epochs

max_baseline_error double output single by dgps/float/fix/ppp outage

reset_baseline_error double velocity constraint in compassing mode {var before fix, var after fix} (m
2/s

2)

7.2.1 Data Sets (DIDs)

- 102/330 - ©2022

dev_info_t

DID_GPX_FLASH_CFG

GPX flash configuration

Field Type Description

reserved uint16_t Reserved bits

hardwareType uint8_t Hardware Type: 1=uINS, 2=EVB, 3=IMX, 4=GPX (see eIsHardwareType)

reserved2 uint8_t Unused

serialNumber uint32_t Serial number

hardwareVer uint8_t[4] Hardware version

firmwareVer uint8_t[4] Firmware (software) version

buildNumber uint32_t Build number

protocolVer uint8_t[4] Communications protocol version

repoRevision uint32_t Repository revision number

manufacturer char[24] Manufacturer name

buildType uint8_t Build type (Release: 'a'=ALPHA, 'b'=BETA, 'c'=RELEASE CANDIDATE,

'r'=PRODUCTION RELEASE, 'd'=developer/debug)

buildYear uint8_t Build date year - 2000

buildMonth uint8_t Build date month

buildDay uint8_t Build date day

buildHour uint8_t Build time hour

buildMinute uint8_t Build time minute

buildSecond uint8_t Build time second

buildMillisecond uint8_t Build time millisecond

addInfo char[24] Additional info

firmwareMD5Hash uint32_t[4] Firmware MD5 hash

7.2.1 Data Sets (DIDs)

- 103/330 - ©2022

gpx_flash_cfg_t

DID_GPX_RMC

GPX rmc

Field Type Description

size uint32_t Size of this struct

checksum uint32_t Checksum, excluding size and checksum

key uint32_t Manufacturer method for restoring flash defaults

ser0BaudRate uint32_t Serial port 0 baud rate in bits per second

ser1BaudRate uint32_t Serial port 1 baud rate in bits per second

ser2BaudRate uint32_t Serial port 2 baud rate in bits per second

startupGPSDtMs uint32_t GPS measurement (system input data) update period in milliseconds set on

startup. 200ms minimum (5Hz max).

gps1AntOffset float[3] X,Y,Z offset in meters in Sensor Frame to GPS 1 antenna.

gps2AntOffset float[3] X,Y,Z offset in meters in Sensor Frame to GPS 2 antenna.

gnssSatSigConst uint16_t Satellite system constellation used in GNSS solution. (see eGnssSatSigConst)

0x0003=GPS, 0x000C=QZSS, 0x0030=Galileo, 0x00C0=Beidou,

0x0300=GLONASS, 0x1000=SBAS

dynamicModel uint8_t Dynamic platform model (see eDynamicModel). Options are: 0=PORTABLE,

2=STATIONARY, 3=PEDESTRIAN, 4=GROUND VEHICLE, 5=SEA,

6=AIRBORNE_1G, 7=AIRBORNE_2G, 8=AIRBORNE_4G, 9=WRIST. Used to

balance noise and performance characteristics of the system. The dynamics

selected here must be at least as fast as your system or you experience accuracy

error. This is tied to the GPS position estimation model and intend in the future

to be incorporated into the INS position model.

debug uint8_t Debug

gpsTimeSyncPeriodMs uint32_t Time between GPS time synchronization pulses in milliseconds. Requires reboot

to take effect.

gpsTimeUserDelay float (sec) User defined delay for GPS time. This parameter can be used to account for

GPS antenna cable delay.

gpsMinimumElevation float Minimum elevation of a satellite above the horizon to be used in the solution

(radians). Low elevation satellites may provide degraded accuracy, due to the

long signal path through the atmosphere.

RTKCfgBits uint32_t RTK configuration bits (see eRTKConfigBits).

gnssCn0Minimum uint8_t (dBHz) GNSS CN0 absolute minimum threshold for signals. Used to filter signals

in RTK solution.

gnssCn0DynMinOffset uint8_t (dBHz) GNSS CN0 dynamic minimum threshold offset below max CN0 across all

satellites. Used to filter signals used in RTK solution. To disable, set

gnssCn0DynMinOffset to zero and increase gnssCn0Minimum.

reserved1 uint8_t[2] Reserved

sysCfgBits uint32_t System configuration bits (see eGpxSysConfigBits).

reserved2 uint32_t Reserved

7.2.1 Data Sets (DIDs)

- 104/330 - ©2022

rmc_t

DID_GPX_STATUS

GPX status

gpx_status_t

Raw GPS Data

Raw GPS data is contained in the DID_GPS1_RAW , DID_GPS2_RAW , and DID_GPS_BASE_RAW messages of type gps_raw_t . The actual raw

data is contained in the union member gps_raw_t.data and should be interpreted based on the value of gps_raw_t.dataType (i.e. as

observation, ephemeris, SBAS, or base station position).

DID_GPS1_RAW

GPS raw data for rover (observation, ephemeris, etc.) - requires little endian CPU. The contents of data can vary for this message

and are determined by dataType field. RTK positioning or RTK compassing must be enabled to stream this message.

gps_raw_t

DID_GPS2_RAW

GPS raw data for rover (observation, ephemeris, etc.) - requires little endian CPU. The contents of data can vary for this message

and are determined by dataType field. RTK positioning or RTK compassing must be enabled to stream this message.

Field Type Description

bits uint64_t Data stream enable bits for the specified ports. (see RMC_BITS_...)

options uint32_t Options to select alternate ports to output data, etc. (see RMC_OPTIONS_...)

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

status uint32_t Status (eGpxStatus)

grmcBitsSer0 uint64_t GRMC BITS (see GRMC_BITS_...)

grmcBitsSer1 uint64_t (see NMEA_MSG_ID...)

grmcBitsSer2 uint64_t Hardware status flags (eGPXHdwStatusFlags)

grmcBitsUSB uint64_t MCU temperature (GPX_INVALID_MCU_TEMP if not availible)

grmcNMEABitsSer0 uint64_t Nav output period (ms).

grmcNMEABitsSer1 uint64_t Flash config checksum used with host SDK synchronization

grmcNMEABitsSer2 uint64_t RTK Mode bits (see eRTKConfigBits)

grmcNMEABitsUSB uint64_t port

Field Type Description

receiverIndex uint8_t Receiver index (1=RECEIVER_INDEX_GPS1,

2=RECEIVER_INDEX_EXTERNAL_BASE, or 3=RECEIVER_INDEX_GPS2)

dataType uint8_t Type of data (eRawDataType: 1=observations, 2=ephemeris, 3=glonassEphemeris,

4=SBAS, 5=baseAntenna, 6=IonosphereModel)

obsCount uint8_t Number of observations in data (obsd_t) when dataType==1

(raw_data_type_observation).

reserved uint8_t Reserved

data uGpsRawData Interpret based on dataType (see eRawDataType)

7.2.1 Data Sets (DIDs)

- 105/330 - ©2022

gps_raw_t

DID_GPS_BASE_RAW

GPS raw data for base station (observation, ephemeris, etc.) - requires little endian CPU. The contents of data can vary for this

message and are determined by dataType field. RTK positioning or RTK compassing must be enabled to stream this message.

gps_raw_t

RAW GPS DATA BUFFER UNION

uGpsRawData

Field Type Description

receiverIndex uint8_t Receiver index (1=RECEIVER_INDEX_GPS1,

2=RECEIVER_INDEX_EXTERNAL_BASE, or 3=RECEIVER_INDEX_GPS2)

dataType uint8_t Type of data (eRawDataType: 1=observations, 2=ephemeris, 3=glonassEphemeris,

4=SBAS, 5=baseAntenna, 6=IonosphereModel)

obsCount uint8_t Number of observations in data (obsd_t) when dataType==1

(raw_data_type_observation).

reserved uint8_t Reserved

data uGpsRawData Interpret based on dataType (see eRawDataType)

Field Type Description

receiverIndex uint8_t Receiver index (1=RECEIVER_INDEX_GPS1,

2=RECEIVER_INDEX_EXTERNAL_BASE, or 3=RECEIVER_INDEX_GPS2)

dataType uint8_t Type of data (eRawDataType: 1=observations, 2=ephemeris, 3=glonassEphemeris,

4=SBAS, 5=baseAntenna, 6=IonosphereModel)

obsCount uint8_t Number of observations in data (obsd_t) when dataType==1

(raw_data_type_observation).

reserved uint8_t Reserved

data uGpsRawData Interpret based on dataType (see eRawDataType)

Field Type Description

obs obsd_t[] Satellite observation data

eph eph_t Satellite non-GLONASS ephemeris data (GPS, Galileo, Beidou, QZSS)

gloEph geph_t Satellite GLONASS ephemeris data

sbas sbsmsg_t Satellite-Based Augmentation Systems (SBAS) data

sta sta_t Base station information (base position, antenna position, antenna height,

etc.)

ion ion_model_utc_alm_t Ionosphere model and UTC parameters

buf uint8_t[1000] Byte buffer

7.2.1 Data Sets (DIDs)

- 106/330 - ©2022

GPS GALILEO QZSS EPHEMERIS

eph_t

7.2.1 Data Sets (DIDs)

- 107/330 - ©2022

Field Type Description

sat int32_t Satellite number in RTKlib notation. GPS: 1-32, GLONASS: 33-59, Galilleo: 60-89, SBAS:

90-95

iode int32_t IODE Issue of Data, Ephemeris (ephemeris version)

iodc int32_t IODC Issue of Data, Clock (clock version)

sva int32_t SV accuracy (URA index) IRN-IS-200H p.97

svh int32_t SV health GPS/QZS (0:ok)

week int32_t GPS/QZS: gps week, GAL: galileo week

code int32_t GPS/QZS: code on L2. (00 = Invalid, 01 = P Code ON, 11 = C/A code ON, 11 = Invalid). GAL/

CMP: data sources

flag int32_t GPS/QZS: L2 P data flag (indicates that the NAV data stream was commanded OFF on the P-

code of the in-phase component of the L2 channel). CMP: nav type

toe gtime_t Time Of Ephemeris, ephemeris reference epoch in seconds within the week (s)

toc gtime_t clock data reference time (s) (20.3.4.5)

ttr gtime_t T_trans (s)

A double Orbit semi-major axis (m)

e double Orbit eccentricity (non-dimensional)

i0 double Orbit inclination angle at reference time (rad)

OMG0 double Longitude of ascending node of orbit plane at weekly epoch (rad)

omg double Argument of perigee (rad)

M0 double Mean anomaly at reference time (rad)

deln double Mean Motion Difference From Computed Value (rad)

OMGd double Rate of Right Ascension (rad/s)

idot double Rate of Inclination Angle (rad/s)

crc double Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius (m)

crs double Amplitude of the Sine Harmonic Correction Term to the Orbit Radius (m)

cuc double Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude (rad)

cus double Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude (rad)

cic double Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination (rad)

cis double Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination (rad)

toes double Time Of Ephemeris, ephemeris reference epoch in seconds within the week (s), same as above

but represented as double type. Note that toe is computed as eph->toe = gst2time(week, eph-

>toes). This is the expiration time and is generally ~2 hours ahead of current time.

fit double Fit interval (h) (0: 4 hours, 1: greater than 4 hours)

f0 double SV clock offset, af0 (s)

f1 double SV clock drift, af1 (s/s, non-dimensional)

f2 double SV clock drift rate, af2 (1/s)

tgd double[4] Group delay parameters GPS/QZS: tgd[0] = TGD (IRN-IS-200H p.103). Galilleo: tgd[0] = BGD

E5a/E1, tgd[1] = BGD E5b/E1. Beidou: tgd[0] = BGD1, tgd[1] = BGD2

7.2.1 Data Sets (DIDs)

- 108/330 - ©2022

GLONASS EPHEMERIS

geph_t

SBAS

sbsmsg_t

Field Type Description

Adot double Adot for CNAV, not used

ndot double First derivative of mean motion n (second derivative of mean anomaly M), ndot for CNAV

(rad/s/s). Not used.

Field Type Description

sat int32_t Satellite number in RTKlib notation. GPS: 1-32, GLONASS: 33-59, Galilleo: 60-89,

SBAS: 90-95

iode int32_t IODE (0-6 bit of tb field)

frq int32_t satellite frequency number

svh int32_t satellite health

sva int32_t satellite accuracy

age int32_t satellite age of operation

toe gtime_t Ephemeris reference epoch in seconds within the week in GPS time gpst (s)

tof gtime_t message frame time in gpst (s)

pos double[3] satellite position (ecef) (m)

vel double[3] satellite velocity (ecef) (m/s)

acc double[3] satellite acceleration (ecef) (m/s^2)

taun double SV clock bias (s)

gamn double relative frequency bias

dtaun double delay between L1 and L2 (s)

Field Type Description

week int32_t receiption time - week

tow int32_t reception time - tow

prn int32_t SBAS satellite PRN number

msg uint8_t[29] SBAS message (226bit) padded by 0

reserved uint8_t[3] reserved for alighment

7.2.1 Data Sets (DIDs)

- 109/330 - ©2022

STATION PARAMETERS

sta_t

SATELLITE OBSERVATION

obs_t

SATELLITE INFORMATION

gps_sat_sv_t

INERTIAL MEASUREMENT UNIT (IMU)

imus_t

Configuration

DID_FLASH_CONFIG

Flash memory configuration

Field Type Description

deltype int32_t antenna delta type (0:enu,1:xyz)

pos double[3] station position (ecef) (m)

del double[3] antenna position delta (e/n/u or x/y/z) (m)

hgt double antenna height (m)

stationId int32_t station id

Field Type Description

n uint32_t number of observation slots used

nmax uint32_t number of observation slots allocated

data obsd_t observation data buffer

Field Type Description

gnssId uint8_t GNSS identifier (see eSatSvGnssId)

svId uint8_t Satellite identifier

elev int8_t (deg) Elevation (range: ±90)

azim int16_t (deg) Azimuth (range: ±180)

cno uint8_t (dBHz) Carrier to noise ratio (signal strength)

status uint16_t (see eSatSvStatus)

Field Type Description

pqr float[3] Gyroscope P, Q, R in radians / second

acc float[3] Acceleration X, Y, Z in meters / second squared

7.2.1 Data Sets (DIDs)

- 110/330 - ©2022

nvm_flash_cfg_t

7.2.1 Data Sets (DIDs)

- 111/330 - ©2022

Field Type Description

size uint32_t Size of group or union, which is nvm_group_x_t + padding

checksum uint32_t Checksum, excluding size and checksum

key uint32_t Manufacturer method for restoring flash defaults

startupImuDtMs uint32_t IMU sample (system input) period in milliseconds set on startup.

Cannot be larger than startupNavDtMs. Zero disables sensor/IMU

sampling.

startupNavDtMs uint32_t Navigation filter (system output) output period in milliseconds set

on startup. Used to initialize sysParams.navOutputPeriodMs.

ser0BaudRate uint32_t Serial port 0 baud rate in bits per second

ser1BaudRate uint32_t Serial port 1 baud rate in bits per second

insRotation float[3] Rotation in radians about the X,Y,Z axes from Sensor Frame to

Intermediate Output Frame. Order applied: Z,Y,X.

insOffset float[3] X,Y,Z offset in meters from Intermediate Output Frame to INS

Output Frame.

gps1AntOffset float[3] X,Y,Z offset in meters in Sensor Frame to GPS 1 antenna.

dynamicModel uint8_t INS dynamic platform model (see eDynamicModel). Options are:

0=PORTABLE, 2=STATIONARY, 3=PEDESTRIAN, 4=GROUND

VEHICLE, 5=SEA, 6=AIRBORNE_1G, 7=AIRBORNE_2G,

8=AIRBORNE_4G, 9=WRIST. Used to balance noise and

performance characteristics of the system. The dynamics selected

here must be at least as fast as your system or you experience

accuracy error. This is tied to the GPS position estimation model

and intend in the future to be incorporated into the INS position

model.

debug uint8_t Debug

gnssSatSigConst uint16_t Satellite system constellation used in GNSS solution. (see

eGnssSatSigConst) 0x0003=GPS, 0x000C=QZSS, 0x0030=Galileo,

0x00C0=Beidou, 0x0300=GLONASS, 0x1000=SBAS

sysCfgBits uint32_t System configuration bits (see eSysConfigBits).

refLla double[3] Reference latitude, longitude and height above ellipsoid for north

east down (NED) calculations (deg, deg, m)

lastLla double[3] Last latitude, longitude, HAE (height above ellipsoid) used to aid

GPS startup (deg, deg, m). Updated when the distance between

current LLA and lastLla exceeds lastLlaUpdateDistance.

lastLlaTimeOfWeekMs uint32_t Last LLA GPS time since week start (Sunday morning) in

milliseconds

lastLlaWeek uint32_t Last LLA GPS number of weeks since January 6
th

, 1980

lastLlaUpdateDistance float Distance between current and last LLA that triggers an update of

lastLla

ioConfig uint32_t Hardware interface configuration bits (see eIoConfig).

platformConfig uint32_t Hardware platform specifying the IMX carrier board type (i.e.

RUG, EVB, IG) and configuration bits (see ePlatformConfig). The

platform type is used to simplify the GPS and I/O configuration

process. Bit PLATFORM_CFG_UPDATE_IO_CONFIG is excluded

7.2.1 Data Sets (DIDs)

- 112/330 - ©2022

DID_NMEA_BCAST_PERIOD

Set broadcast periods for NMEA messages

Field Type Description

from the flashConfig checksum and from determining whether to

upload.

gps2AntOffset float[3] X,Y,Z offset in meters in Sensor Frame origin to GPS 2 antenna.

zeroVelRotation float[3] Euler (roll, pitch, yaw) rotation in radians from INS Sensor Frame

to Intermediate ZeroVelocity Frame. Order applied: heading, pitch,

roll.

zeroVelOffset float[3] X,Y,Z offset in meters from Intermediate ZeroVelocity Frame to

Zero Velocity Frame.

gpsTimeUserDelay float (sec) User defined delay for GPS time. This parameter can be used

to account for GPS antenna cable delay.

magDeclination float Earth magnetic field (magnetic north) declination (heading offset

from true north) in radians

gpsTimeSyncPeriodMs uint32_t Time between GPS time synchronization pulses in milliseconds.

Requires reboot to take effect.

startupGPSDtMs uint32_t GPS measurement (system input) update period in milliseconds set

on startup. 200ms minimum (5Hz max).

RTKCfgBits uint32_t RTK configuration bits (see eRTKConfigBits).

sensorConfig uint32_t Sensor config to specify the full-scale sensing ranges and output

rotation for the IMU and magnetometer (see eSensorConfig)

gpsMinimumElevation float Minimum elevation of a satellite above the horizon to be used in

the solution (radians). Low elevation satellites may provide

degraded accuracy, due to the long signal path through the

atmosphere.

ser2BaudRate uint32_t Serial port 2 baud rate in bits per second

wheelConfig wheel_config_t Wheel encoder: euler angles describing the rotation from imu to

left wheel

magInterferenceThreshold float Magnetometer interference sensitivity threshold. Typical range is

2-10 (3 default) and 1000 to disable mag interference detection.

magCalibrationQualityThreshold float Magnetometer calibration quality sensitivity threshold. Typical

range is 10-20 (10 default) and 1000 to disable mag calibration

quality check, forcing it to be always good.

gnssCn0Minimum uint8_t (dBHz) GNSS CN0 absolute minimum threshold for signals. Used

to filter signals in RTK solution.

gnssCn0DynMinOffset uint8_t (dBHz) GNSS CN0 dynamic minimum threshold offset below max

CN0 across all satellites. Used to filter signals used in RTK

solution. To disable, set gnssCn0DynMinOffset to zero and increase

gnssCn0Minimum.

reserved1 uint8_t[2] Reserved

reserved2 uint32_t[2] Reserved

7.2.1 Data Sets (DIDs)

- 113/330 - ©2022

nmea_msgs_t

DID_RMC

Realtime Message Controller (RMC). The data sets available through RMC are driven by the availability of the data. The RMC

provides updates from various data sources (i.e. sensors) as soon as possible with minimal latency. Several of the data sources

(sensors) output data at different data rates that do not all correspond. The RMC is provided so that broadcast of sensor data is

done as soon as it becomes available. All RMC messages can be enabled using the standard Get Data packet format.

rmc_t

Command

DID_SYS_CMD

System commands. Both the command and invCommand fields must be set at the same time for a command to take effect.

system_command_t

EVB-2

DID_EVB_FLASH_CFG

EVB configuration.

Field Type Description

options uint32_t Options: Port selection[0x0=current, 0x1=ser0, 0x2=ser1,

0x4=ser2, 0x8=USB, 0x100=preserve, 0x200=Persistent] (see

RMC_OPTIONS_...)

nmeaBroadcastMsgs nmeaBroadcastMsgPair_t[20] NMEA message to be set. Up to 20 message ID/period pairs.

Message ID of zero indicates the remaining pairs are not used.

(see eNmeaMsgId)

Field Type Description

bits uint64_t Data stream enable bits for the specified ports. (see RMC_BITS_...)

options uint32_t Options to select alternate ports to output data, etc. (see RMC_OPTIONS_...)

Field Type Description

command uint32_t System commands (see eSystemCommand) 1=save current persistent messages, 5=zero

motion, 97=save flash, 99=software reset. "invCommand" (following variable) must be set

to bitwise inverse of this value for this command to be processed.

invCommand uint32_t Error checking field that must be set to bitwise inverse of command field for the command

to take effect.

7.2.1 Data Sets (DIDs)

- 114/330 - ©2022

evb_flash_cfg_t

Field Type Description

size uint32_t Size of this struct

checksum uint32_t Checksum, excluding size and checksum

key uint32_t Manufacturer method for restoring flash defaults

cbPreset uint8_t Communications bridge preset. (see

eEvb2ComBridgePreset)

reserved1 uint8_t[3] Communications bridge forwarding

cbf uint32_t[EVB2_PORT_COUNT] Communications bridge options (see

eEvb2ComBridgeOptions)

cbOptions uint32_t Config bits (see eEvbFlashCfgBits)

bits uint32_t Radio preamble ID (PID) - 0x0 to 0x9. Only radios with

matching PIDs can communicate together. Different PIDs

minimize interference between multiple sets of networks.

Checked before the network ID.

radioPID uint32_t Radio network ID (NID) - 0x0 to 0x7FFF. Only radios with

matching NID can communicate together. Checked after

the preamble ID.

radioNID uint32_t Radio power level - Transmitter output power level. (XBee

PRO SX 0=20dBm, 1=27dBm, 2=30dBm)

radioPowerLevel uint32_t WiFi SSID and PSK

wifi evb_wifi_t[3] Server IP and port

server evb_server_t[3] Encoder tick to wheel rotation conversion factor (in

radians). Encoder tick count per revolution on 1 channel x

gear ratio x 2pi.

encoderTickToWheelRad float CAN baudrate

CANbaud_kbps uint32_t CAN receive address

can_receive_address uint32_t EVB port for uINS communications and SD card logging.

0=uINS-Ser0 (default), 1=uINS-Ser1, SP330=5,

6=GPIO_H8 (use eEvb2CommPorts)

uinsComPort uint8_t EVB port for uINS aux com and RTK corrections. 0=uINS-

Ser0, 1=uINS-Ser1 (default), 5=SP330, 6=GPIO_H8 (use

eEvb2CommPorts)

uinsAuxPort uint8_t Enable radio RTK filtering, etc. (see eEvb2PortOptions)

reserved2 uint8_t[2] Baud rate for EVB serial port H3 (SP330 RS233 and

RS485/422).

portOptions uint32_t Baud rate for EVB serial port H4 (TLL to external radio).

h3sp330BaudRate uint32_t Baud rate for EVB serial port H8 (TLL).

h4xRadioBaudRate uint32_t Wheel encoder configuration (see eWheelCfgBits)

h8gpioBaudRate uint32_t Wheel update period. Sets the wheel encoder and control

update period. (ms)

7.2.1 Data Sets (DIDs)

- 115/330 - ©2022

DID_EVB_STATUS

EVB monitor and log control interface.

evb_status_t

General

DID_BIT

System built-in self-test

bit_t

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

firmwareVer uint8_t[4] Firmware (software) version

evbStatus uint32_t Status (eEvbStatus)

loggerMode uint32_t Data logger control state. (see eEvb2LoggerMode)

loggerElapsedTimeMs uint32_t logger

wifiIpAddr uint32_t WiFi IP address

sysCommand uint32_t System command (see eSystemCommand). 99 = software reset

towOffset double Time sync offset between local time since boot up to GPS time of week in

seconds. Add this to IMU and sensor time to get GPS time of week in seconds.

Field Type Description

command uint8_t BIT input command (see eBitCommand). Ignored when zero.

lastCommand uint8_t BIT last input command (see eBitCommand)

state uint8_t BIT current state (see eBitState)

reserved uint8_t Unused

hdwBitStatus uint32_t Hardware BIT status (see eHdwBitStatusFlags)

calBitStatus uint32_t Calibration BIT status (see eCalBitStatusFlags)

tcPqrBias float Temperature calibration bias

tcAccBias float Temperature calibration slope

tcPqrSlope float Temperature calibration linearity

tcAccSlope float Gyro error (rad/s)

tcPqrLinearity float Accelerometer error (m/s^2)

tcAccLinearity float Angular rate standard deviation

pqr float Acceleration standard deviation

acc float Self-test mode (see eBitTestMode)

pqrSigma float Self-test mode bi-directional variable used with testMode

accSigma float The hardware type detected (see "Product Hardware ID"). This is used to ensure

correct firmware is used.

7.2.1 Data Sets (DIDs)

- 116/330 - ©2022

DID_CAN_CONFIG

Addresses for CAN messages

can_config_t

DID_DEV_INFO

Device information

dev_info_t

DID_DIAGNOSTIC_MESSAGE

Diagnostic message

Field Type Description

can_period_mult uint16_t[] Broadcast period multiple - CAN time message. 0 to disable.

can_transmit_address uint32_t[] Transmit address.

can_baudrate_kbps uint16_t Baud rate (kbps) (See can_baudrate_t for valid baud rates)

can_receive_address uint32_t Receive address.

Field Type Description

reserved uint16_t Reserved bits

hardwareType uint8_t Hardware Type: 1=uINS, 2=EVB, 3=IMX, 4=GPX (see eIsHardwareType)

reserved2 uint8_t Unused

serialNumber uint32_t Serial number

hardwareVer uint8_t[4] Hardware version

firmwareVer uint8_t[4] Firmware (software) version

buildNumber uint32_t Build number

protocolVer uint8_t[4] Communications protocol version

repoRevision uint32_t Repository revision number

manufacturer char[24] Manufacturer name

buildType uint8_t Build type (Release: 'a'=ALPHA, 'b'=BETA, 'c'=RELEASE CANDIDATE,

'r'=PRODUCTION RELEASE, 'd'=developer/debug)

buildYear uint8_t Build date year - 2000

buildMonth uint8_t Build date month

buildDay uint8_t Build date day

buildHour uint8_t Build time hour

buildMinute uint8_t Build time minute

buildSecond uint8_t Build time second

buildMillisecond uint8_t Build time millisecond

addInfo char[24] Additional info

firmwareMD5Hash uint32_t[4] Firmware MD5 hash

7.2.1 Data Sets (DIDs)

- 117/330 - ©2022

diag_msg_t

DID_EVB_DEBUG_ARRAY

debug_array_t

DID_EVB_DEV_INFO

EVB device information

dev_info_t

DID_EVB_RTOS_INFO

EVB-2 RTOS information.

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

messageLength uint32_t Message length, including null terminator

message char[256] Message data, max size of message is 256

Field Type Description

Field Type Description

reserved uint16_t Reserved bits

hardwareType uint8_t Hardware Type: 1=uINS, 2=EVB, 3=IMX, 4=GPX (see eIsHardwareType)

reserved2 uint8_t Unused

serialNumber uint32_t Serial number

hardwareVer uint8_t[4] Hardware version

firmwareVer uint8_t[4] Firmware (software) version

buildNumber uint32_t Build number

protocolVer uint8_t[4] Communications protocol version

repoRevision uint32_t Repository revision number

manufacturer char[24] Manufacturer name

buildType uint8_t Build type (Release: 'a'=ALPHA, 'b'=BETA, 'c'=RELEASE CANDIDATE,

'r'=PRODUCTION RELEASE, 'd'=developer/debug)

buildYear uint8_t Build date year - 2000

buildMonth uint8_t Build date month

buildDay uint8_t Build date day

buildHour uint8_t Build time hour

buildMinute uint8_t Build time minute

buildSecond uint8_t Build time second

buildMillisecond uint8_t Build time millisecond

addInfo char[24] Additional info

firmwareMD5Hash uint32_t[4] Firmware MD5 hash

7.2.1 Data Sets (DIDs)

- 118/330 - ©2022

evb_rtos_info_t

DID_EVENT

did_event_t

DID_EVENT_HEADER_SIZE

did_event_t

DID_GPS1_SIG

GPS 1 GNSS signal information.

gps_sig_t

DID_GPS1_TIMEPULSE

GPS1 PPS time synchronization.

gps_timepulse_t

Field Type Description

freeHeapSize uint32_t Heap high water mark bytes

mallocSize uint32_t Total memory allocated using RTOS pvPortMalloc()

freeSize uint32_t Total memory freed using RTOS vPortFree()

task rtos_task_t[] Tasks

Field Type Description

time double Time (uptime in seconds)

senderSN uint32_t Serial number

senderHdwId uint16_t Hardware: 0=Host, 1=uINS, 2=EVB, 3=IMX, 4=GPX (see "Product Hardware ID")

priority int8_t see eEventPriority

res8 uint8_t see eEventMsgTypeID

Field Type Description

time double Time (uptime in seconds)

senderSN uint32_t Serial number

senderHdwId uint16_t Hardware: 0=Host, 1=uINS, 2=EVB, 3=IMX, 4=GPX (see "Product Hardware ID")

priority int8_t see eEventPriority

res8 uint8_t see eEventMsgTypeID

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

numSigs uint32_t Number of satellite signals in the following satelliate signal list

sig gps_sig_sv_t[100] Satellite signal list

Field Type Description

7.2.1 Data Sets (DIDs)

- 119/330 - ©2022

DID_GPS2_SIG

GPS 2 GNSS signal information.

gps_sig_t

DID_GPX_BIT

GPX BIT test

gpx_bit_t

DID_GPX_DEBUG_ARRAY

GPX debug

debug_array_t

DID_GPX_PORT_MONITOR

Data rate and status monitoring for each communications port.

port_monitor_t

DID_GPX_RTOS_INFO

GPX RTOs info

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

numSigs uint32_t Number of satellite signals in the following satelliate signal list

sig gps_sig_sv_t[100] Satellite signal list

Field Type Description

results uint32_t GPX built-in test status (see eGPXBit_results)

command uint8_t Command (see eGPXBit_CMD)

port uint8_t Port used with the test

testMode uint8_t Self-test mode (see eGPXBit_test_mode)

state uint8_t Built-in self-test state (see eGPXBit_state)

detectedHardwareId uint16_t The hardware ID detected (see "Product Hardware ID"). This is used to ensure

correct firmware is used.

reserved uint8_t[2] Unused

Field Type Description

Field Type Description

port port_monitor_set_t[6] Port monitor set

7.2.1 Data Sets (DIDs)

- 120/330 - ©2022

gpx_rtos_info_t

DID_GROUND_VEHICLE

Static configuration for wheel transform measurements.

ground_vehicle_t

DID_IMU3_RAW

Triple IMU data calibrated from DID_IMU3_UNCAL. We recommend use of DID_IMU or DID_PIMU as they are oversampled and

contain less noise.

imu3_t

DID_IMU3_UNCAL

Uncalibrated triple IMU data. We recommend use of DID_IMU or DID_PIMU as they are calibrated and oversampled and contain

less noise. Minimum data period is DID_FLASH_CONFIG.startupImuDtMs or 4, whichever is larger (250Hz max).

imu3_t

DID_IMU_MAG

DID_IMU + DID_MAGNETOMETER. Only one of DID_IMU_MAG or DID_PIMU_MAG should be streamed simultaneously.

Field Type Description

freeHeapSize uint32_t Heap high water mark bytes

mallocSize uint32_t Total memory allocated using RTOS pvPortMalloc()

freeSize uint32_t Total memory freed using RTOS vPortFree()

task rtos_task_t[] Tasks

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

status uint32_t Ground vehicle status flags (eGroundVehicleStatus)

mode uint32_t Current mode of the ground vehicle. Use this field to apply commands. (see

eGroundVehicleMode)

wheelConfig wheel_config_t Wheel transform, track width, and wheel radius.

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

status uint32_t IMU Status (eImuStatus)

I imus_t[3] Inertial Measurement Units (IMUs)

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

status uint32_t IMU Status (eImuStatus)

I imus_t[3] Inertial Measurement Units (IMUs)

7.2.1 Data Sets (DIDs)

- 121/330 - ©2022

imu_mag_t

DID_INFIELD_CAL

Measure and correct IMU calibration error. Estimate INS rotation to align INS with vehicle.

infield_cal_t

DID_INL2_MAG_OBS_INFO

INL2 magnetometer calibration information.

Field Type Description

imu imu_t imu - raw or pre-integrated depending on data id

mag magnetometer_t mag

Field Type Description

state uint32_t Used to set and monitor the state of the infield calibration system. (see

eInfieldCalState)

status uint32_t Infield calibration status. (see eInfieldCalStatus)

sampleTimeMs uint32_t Number of samples used in IMU average. sampleTimeMs = 0 means "imu"

member contains the IMU bias from flash.

imu imus_t[3] Dual purpose variable. 1.) This is the averaged IMU sample when

sampleTimeMs != 0. 2.) This is a mirror of the motion calibration IMU bias

from flash when sampleTimeMs = 0.

calData infield_cal_vaxis_t[3] Collected data used to solve for the bias error and INS rotation. Vertical axis:

0 = X, 1 = Y, 2 = Z

7.2.1 Data Sets (DIDs)

- 122/330 - ©2022

inl2_mag_obs_info_t

DID_INL2_NED_SIGMA

Standard deviation of INL2 EKF estimates in the NED frame.

inl2_ned_sigma_t

DID_INL2_STATES

INS Extended Kalman Filter (EKF) states

Field Type Description

timeOfWeekMs uint32_t Timestamp in milliseconds

Ncal_samples uint32_t Number of calibration samples

ready uint32_t Data ready to be processed

calibrated uint32_t Calibration data present. Set to -1 to force mag recalibration.

auto_recal uint32_t Allow mag to auto-recalibrate

outlier uint32_t Bad sample data

magHdg float Heading from magnetometer

insHdg float Heading from INS

magInsHdgDelta float Difference between mag heading and (INS heading plus mag declination)

nis float Normalized innovation squared (likelihood metric)

nis_threshold float Threshold for maximum NIS

Wcal float[9] Magnetometer calibration matrix. Must be initialized with a unit matrix, not zeros!

activeCalSet uint32_t Active calibration set (0 or 1)

magHdgOffset float Offset between magnetometer heading and estimate heading

Tcal float Scaled computed variance between calibrated magnetometer samples.

bias_cal float[3] Calibrated magnetometer output can be produced using: Bcal = Wcal * (Braw -

bias_cal)

Field Type Description

timeOfWeekMs unsigned Timestamp in milliseconds

StdPosNed float[3] NED position error sigma

StdVelNed float[3] NED velocity error sigma

StdAttNed float[3] NED attitude error sigma

StdAccBias float[3] Acceleration bias error sigma

StdGyrBias float[3] Angular rate bias error sigma

StdBarBias float Barometric altitude bias error sigma

StdMagDeclination float Mag declination error sigma

7.2.1 Data Sets (DIDs)

- 123/330 - ©2022

inl2_states_t

DID_INL2_STATUS

inl2_status_t

DID_IO

I/O

io_t

DID_MANUFACTURING_INFO

Manufacturing info

manufacturing_info_t

DID_PIMU_MAG

DID_PIMU + DID_MAGNETOMETER. Only one of DID_IMU_MAG or DID_PIMU_MAG should be streamed simultaneously.

Field Type Description

timeOfWeek double GPS time of week (since Sunday morning) in seconds

qe2b float[4] Quaternion body rotation with respect to ECEF

ve float[3] (m/s) Velocity in ECEF frame

ecef double[3] (m) Position in ECEF frame

biasPqr float[3] (rad/s) Gyro bias

biasAcc float[3] (m/s^2) Accelerometer bias

biasBaro float (m) Barometer bias

magDec float (rad) Magnetic declination

magInc float (rad) Magnetic inclination

Field Type Description

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

gpioStatus uint32_t General purpose I/O status

Field Type Description

serialNumber uint32_t Inertial Sense serial number

hardwareId uint16_t Hardware ID: This is a packed identifier, which includes the Hardware Type,

hardwareVer Major, and hardwareVer Minor

lotNumber uint16_t Inertial Sense lot number

date char[16] Inertial Sense manufacturing date (YYYYMMDDHHMMSS)

key uint32_t Key - write: unlock manufacturing info, read: number of times OTP has been set, 15

max

platformType int32_t Platform / carrier board (ePlatformConfig::PLATFORM_CFG_TYPE_MASK). Only valid if

greater than zero.

reserved int32_t Microcontroller unique identifier, 128 bits for SAM / 96 for STM32

7.2.1 Data Sets (DIDs)

- 124/330 - ©2022

pimu_mag_t

DID_PORT_MONITOR

Data rate and status monitoring for each communications port.

port_monitor_t

DID_POSITION_MEASUREMENT

External position estimate

pos_measurement_t

DID_REFERENCE_IMU

Raw reference or truth IMU used for manufacturing calibration and testing. Input from testbed.

imu_t

DID_REFERENCE_MAGNETOMETER

Reference or truth magnetometer used for manufacturing calibration and testing

magnetometer_t

DID_REFERENCE_PIMU

Reference or truth IMU used for manufacturing calibration and testing

Field Type Description

pimu pimu_t Preintegrated IMU

mag magnetometer_t Magnetometer

Field Type Description

port port_monitor_set_t[6] Port monitor set

Field Type Description

timeOfWeek double GPS time of week (since Sunday morning) in seconds

ecef double[3] Position in ECEF (earth-centered earth-fixed) frame in meters

psi float Heading with respect to NED frame (rad

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

status uint32_t IMU Status (eImuStatus)

I imus_t Inertial Measurement Unit (IMU)

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding

gps.towOffset

mag float[3] Magnetometers

7.2.1 Data Sets (DIDs)

- 125/330 - ©2022

pimu_t

DID_ROS_COVARIANCE_POSE_TWIST

INL2 EKF covariances matrix lower diagonals

ros_covariance_pose_twist_t

DID_RTOS_INFO

RTOS information.

rtos_info_t

DID_RUNTIME_PROFILER

System runtime profiler

runtime_profiler_t

DID_SCOMP

sensor_compensation_t

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding gps.towOffset

dt float Integral period in seconds for delta theta and delta velocity. This is configured using

DID_FLASH_CONFIG.startupNavDtMs.

status uint32_t IMU Status (eImuStatus)

theta float[3] IMU delta theta (gyroscope {p,q,r} integral) in radians in sensor frame

vel float[3] IMU delta velocity (accelerometer {x,y,z} integral) in m/s in sensor frame

Field Type Description

timeOfWeek double GPS time of week (since Sunday morning) in seconds

covPoseLD float[21] (rad^2, m^2) EKF attitude and position error covariance matrix lower diagonal in body

(attitude) and ECEF (position) frames

covTwistLD float[21] ((m/s)^2, (rad/s)^2) EKF velocity and angular rate error covariance matrix lower

diagonal in ECEF (velocity) and body (attitude) frames

Field Type Description

freeHeapSize uint32_t Heap high water mark bytes

mallocSize uint32_t Total memory allocated using RTOS pvPortMalloc()

freeSize uint32_t Total memory freed using RTOS vPortFree()

task rtos_task_t[] Tasks

Field Type Description

Field Type Description

7.2.1 Data Sets (DIDs)

- 126/330 - ©2022

DID_SENSORS_ADC

sys_sensors_adc_t

DID_SENSORS_ADC_SIGMA

sys_sensors_adc_t

DID_SENSORS_MCAL

Temperature compensated and motion calibrated IMU output.

sensors_w_temp_t

DID_SENSORS_TCAL

Temperature compensated IMU output.

sensors_w_temp_t

Field Type Description

Field Type Description

Field Type Description

imu3 imu3_t (°C) Temperature of IMU. Units only apply for calibrated data.

temp f_t[3] (uT) Magnetometers. Units only apply for calibrated data.

Field Type Description

imu3 imu3_t (°C) Temperature of IMU. Units only apply for calibrated data.

temp f_t[3] (uT) Magnetometers. Units only apply for calibrated data.

7.2.1 Data Sets (DIDs)

- 127/330 - ©2022

DID_SENSORS_TC_BIAS

sensors_t

DID_SENSORS_UCAL

Uncalibrated IMU output.

sensors_w_temp_t

DID_STROBE_IN_TIME

Timestamp for input strobe.

strobe_in_time_t

DID_SURVEY_IN

Survey in, used to determine position for RTK base station. Base correction output cannot run during a survey and will be

automatically disabled if a survey is started.

Field Type Description

time double Time since boot up in seconds. Convert to GPS time of week by adding gps.towOffset

temp float Temperature in Celsius

pqr float[3] Gyros in radians / second

acc float[3] Accelerometers in meters / second squared

mag float[3] Magnetometers

bar float Barometric pressure in kilopascals

barTemp float Temperature of barometric pressure sensor in Celsius

mslBar float MSL altitude from barometric pressure sensor in meters

humidity float Relative humidity as a percent (%rH). Range is 0% - 100%

vin float EVB system input voltage in volts. uINS pin 5 (G2/AN2). Use 10K/1K resistor divider

between Vin and GND.

ana1 float ADC analog input in volts. uINS pin 4, (G1/AN1).

ana3 float ADC analog input in volts. uINS pin 19 (G3/AN3).

ana4 float ADC analog input in volts. uINS pin 20 (G4/AN4).

Field Type Description

imu3 imu3_t (°C) Temperature of IMU. Units only apply for calibrated data.

temp f_t[3] (uT) Magnetometers. Units only apply for calibrated data.

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

pin uint16_t Strobe input pin (i.e. G1, G2, G5, or G9)

count uint16_t Strobe serial index number

7.2.1 Data Sets (DIDs)

- 128/330 - ©2022

survey_in_t

DID_SYS_FAULT

System fault information. This is broadcast automatically every 10s if a critical fault is detected.

system_fault_t

DID_SYS_PARAMS

System parameters / info

Field Type Description

state uint32_t State of current survey, eSurveyInStatus

maxDurationSec uint32_t Maximum time (milliseconds) survey will run if minAccuracy is not first achieved.

(ignored if 0).

minAccuracy float Required horizontal accuracy (m) for survey to complete before maxDuration.

(ignored if 0)

elapsedTimeSec uint32_t Elapsed time (seconds) of the survey.

hAccuracy float Approximate horizontal accuracy of the survey (m).

lla double[3] The current surveyed latitude, longitude, altitude (deg, deg, m)

Field Type Description

status uint32_t System fault status (see eSysFaultStatus)

g1Task uint32_t Fault Type at HardFault

g2FileNum uint32_t Multipurpose register - Line number of fault

g3LineNum uint32_t Multipurpose register - File number at fault

g4 uint32_t Multipurpose register - at time of fault.

g5Lr uint32_t Multipurpose register - link register value at time of fault.

pc uint32_t Program Counter value at time of fault

psr uint32_t Program Status Register value at time of fault

7.2.1 Data Sets (DIDs)

- 129/330 - ©2022

sys_params_t

DID_WHEEL_ENCODER

Wheel encoder data to be fused with GPS-INS measurements, set DID_GROUND_VEHICLE for configuration before sending this

message

wheel_encoder_t

7.2.2 Enumerations and Defines

System status and configuration is made available through various enumeration and #defines.

Field Type Description

timeOfWeekMs uint32_t GPS time of week (since Sunday morning) in milliseconds

insStatus uint32_t INS status flags (eInsStatusFlags)

hdwStatus uint32_t Hardware status flags (eHdwStatusFlags)

imuTemp float IMU temperature

baroTemp float Baro temperature

mcuTemp float MCU temperature (not available yet)

sysStatus uint32_t System status flags (eSysStatusFlags)

imuSamplePeriodMs uint32_t IMU sample period (ms). Zero disables sampling.

navOutputPeriodMs uint32_t Preintegrated IMU (PIMU) integration period and navigation/AHRS filter

output period (ms).

sensorTruePeriod double Actual sample period relative to GPS PPS (sec)

flashCfgChecksum uint32_t Flash config checksum used with host SDK synchronization

navUpdatePeriodMs uint32_t Navigation/AHRS filter update period (ms)

genFaultCode uint32_t General fault code descriptor (eGenFaultCodes). Set to zero to reset fault code.

upTime double System up time in seconds (with double precision)

Field Type Description

timeOfWeek double (Do not use, internal development only) Time of measurement in current GPS week

status uint32_t Status

theta_l float (Do not use, internal development only) Left wheel angle (rad)

theta_r float (Do not use, internal development only) Right wheel angle (rad)

omega_l float Left wheel angular rate (rad/s). Positive when wheel is turning toward the forward

direction of the vehicle. Use WHEEL_CFG_BITS_DIRECTION_REVERSE_LEFT in

DID_FLASH_CONFIG::wheelConfig to reverse this.

omega_r float Right wheel angular rate (rad/s). Positive when wheel is turning toward the forward

direction of the vehicle. Use WHEEL_CFG_BITS_DIRECTION_REVERSE_RIGHT in

DID_FLASH_CONFIG::wheelConfig to reverse this.

wrap_count_l uint32_t (Do not use, internal development only) Left wheel revolution count

wrap_count_r uint32_t (Do not use, internal development only) Right wheel revolution count

7.2.2 Enumerations and Defines

- 130/330 - ©2022

General

DID_EVB_FLASH_CFG.CBPRESET

(eEvb2ComBridgePreset)

DID_EVB_FLASH_CFG.PORTOPTIONS

(eEvb2PortOptions)

DID_EVB_STATUS.LOGGERMODE

(eEvb2LoggerMode)

Field Value

EVB2_CB_PRESET_NA 0

EVB2_CB_PRESET_ALL_OFF 1

EVB2_CB_PRESET_RS232 2

EVB2_CB_PRESET_RS232_XBEE 3

EVB2_CB_PRESET_RS422_WIFI 4

EVB2_CB_PRESET_SPI_RS232 5

EVB2_CB_PRESET_USB_HUB_RS232 6

EVB2_CB_PRESET_USB_HUB_RS422 7

EVB2_CB_PRESET_COUNT 8

Field Value

EVB2_PORT_OPTIONS_RADIO_RTK_FILTER 0x00000001

EVB2_PORT_OPTIONS_DEFAULT EVB2_PORT_OPTIONS_RADIO_RTK_FILTER

Field Value

EVB2_LOG_NA 0

EVB2_LOG_CMD_START 2

EVB2_LOG_CMD_STOP 4

EVB2_LOG_CMD_PURGE 1002

7.2.2 Enumerations and Defines

- 131/330 - ©2022

DID_FLASH_CONFIG.GNSSSATSIGCONST

(eGnssSatSigConst)

Field Value

GNSS_SAT_SIG_CONST_GPS 0x0003

GNSS_SAT_SIG_CONST_QZS 0x000C

GNSS_SAT_SIG_CONST_GAL 0x0030

GNSS_SAT_SIG_CONST_BDS 0x00C0

GNSS_SAT_SIG_CONST_GLO 0x0300

GNSS_SAT_SIG_CONST_SBS 0x1000

GNSS_SAT_SIG_CONST_IRN 0x2000

GNSS_SAT_SIG_CONST_IME 0x4000

7.2.2 Enumerations and Defines

- 132/330 - ©2022

DID_FLASH_CONFIG.SENSORCONFIG

(eSensorConfig)

7.2.2 Enumerations and Defines

- 133/330 - ©2022

Field Value

SENSOR_CFG_GYR_FS_250 0x00000000

SENSOR_CFG_GYR_FS_500 0x00000001

SENSOR_CFG_GYR_FS_1000 0x00000002

SENSOR_CFG_GYR_FS_2000 0x00000003

SENSOR_CFG_GYR_FS_4000 0x00000004

SENSOR_CFG_GYR_FS_MASK 0x00000007

SENSOR_CFG_GYR_FS_OFFSET (int)0

SENSOR_CFG_ACC_FS_2G 0x00000000

SENSOR_CFG_ACC_FS_4G 0x00000001

SENSOR_CFG_ACC_FS_8G 0x00000002

SENSOR_CFG_ACC_FS_16G 0x00000003

SENSOR_CFG_ACC_FS_MASK 0x00000030

SENSOR_CFG_ACC_FS_OFFSET (int)4

SENSOR_CFG_GYR_DLPF_250HZ 0x00000000

SENSOR_CFG_GYR_DLPF_184HZ 0x00000001

SENSOR_CFG_GYR_DLPF_92HZ 0x00000002

SENSOR_CFG_GYR_DLPF_41HZ 0x00000003

SENSOR_CFG_GYR_DLPF_20HZ 0x00000004

SENSOR_CFG_GYR_DLPF_10HZ 0x00000005

SENSOR_CFG_GYR_DLPF_5HZ 0x00000006

SENSOR_CFG_GYR_DLPF_MASK 0x00000F00

SENSOR_CFG_GYR_DLPF_OFFSET (int)8

SENSOR_CFG_ACC_DLPF_218HZ 0x00000000

SENSOR_CFG_ACC_DLPF_218HZb 0x00000001

SENSOR_CFG_ACC_DLPF_99HZ 0x00000002

SENSOR_CFG_ACC_DLPF_45HZ 0x00000003

SENSOR_CFG_ACC_DLPF_21HZ 0x00000004

SENSOR_CFG_ACC_DLPF_10HZ 0x00000005

SENSOR_CFG_ACC_DLPF_5HZ 0x00000006

SENSOR_CFG_ACC_DLPF_MASK 0x0000F000

SENSOR_CFG_ACC_DLPF_OFFSET (int)12

SENSOR_CFG_SENSOR_ROTATION_MASK 0x001F0000

SENSOR_CFG_SENSOR_ROTATION_OFFSET (int)16

SENSOR_CFG_SENSOR_ROTATION_0_0_0 (int)0

SENSOR_CFG_SENSOR_ROTATION_0_0_90 (int)1

7.2.2 Enumerations and Defines

- 134/330 - ©2022

Field Value

SENSOR_CFG_SENSOR_ROTATION_0_0_180 (int)2

SENSOR_CFG_SENSOR_ROTATION_0_0_N90 (int)3

SENSOR_CFG_SENSOR_ROTATION_90_0_0 (int)4

SENSOR_CFG_SENSOR_ROTATION_90_0_90 (int)5

SENSOR_CFG_SENSOR_ROTATION_90_0_180 (int)6

SENSOR_CFG_SENSOR_ROTATION_90_0_N90 (int)7

SENSOR_CFG_SENSOR_ROTATION_180_0_0 (int)8

SENSOR_CFG_SENSOR_ROTATION_180_0_90 (int)9

SENSOR_CFG_SENSOR_ROTATION_180_0_180 (int)10

SENSOR_CFG_SENSOR_ROTATION_180_0_N90 (int)11

SENSOR_CFG_SENSOR_ROTATION_N90_0_0 (int)12

SENSOR_CFG_SENSOR_ROTATION_N90_0_90 (int)13

SENSOR_CFG_SENSOR_ROTATION_N90_0_180 (int)14

SENSOR_CFG_SENSOR_ROTATION_N90_0_N90 (int)15

SENSOR_CFG_SENSOR_ROTATION_0_90_0 (int)16

SENSOR_CFG_SENSOR_ROTATION_0_90_90 (int)17

SENSOR_CFG_SENSOR_ROTATION_0_90_180 (int)18

SENSOR_CFG_SENSOR_ROTATION_0_90_N90 (int)19

SENSOR_CFG_SENSOR_ROTATION_0_N90_0 (int)20

SENSOR_CFG_SENSOR_ROTATION_0_N90_90 (int)21

SENSOR_CFG_SENSOR_ROTATION_0_N90_180 (int)22

SENSOR_CFG_SENSOR_ROTATION_0_N90_N90 (int)23

SENSOR_CFG_MAG_ODR_100_HZ 0x00200000

SENSOR_CFG_DISABLE_MAGNETOMETER 0x00400000

SENSOR_CFG_DISABLE_BAROMETER 0x00800000

SENSOR_CFG_IMU_FAULT_DETECT_MASK 0xFF000000

SENSOR_CFG_IMU_FAULT_DETECT_GYR 0x01000000

SENSOR_CFG_IMU_FAULT_DETECT_ACC 0x02000000

SENSOR_CFG_IMU_FAULT_DETECT_OFFLINE 0x04000000

SENSOR_CFG_IMU_FAULT_DETECT_LARGE_BIAS 0x08000000

SENSOR_CFG_IMU_FAULT_DETECT_SENSOR_NOISE 0x10000000

7.2.2 Enumerations and Defines

- 135/330 - ©2022

DID_FLASH_CONFIG.SYSCFGBITS

(eSysConfigBits)

Field Value

UNUSED1 0x00000001

SYS_CFG_BITS_ENABLE_MAG_CONTINUOUS_CAL 0x00000002

SYS_CFG_BITS_AUTO_MAG_RECAL 0x00000004

SYS_CFG_BITS_DISABLE_MAG_DECL_ESTIMATION 0x00000008

SYS_CFG_BITS_DISABLE_LEDS 0x00000010

Magnetometer multi-axis

SYS_CFG_BITS_MAG_RECAL_MODE_MASK 0x00000700

SYS_CFG_BITS_MAG_RECAL_MODE_OFFSET 8

SYS_CFG_BITS_MAG_ENABLE_WMM_DECLINATION 0x00000800

SYS_CFG_BITS_DISABLE_MAGNETOMETER_FUSION 0x00001000

SYS_CFG_BITS_DISABLE_BAROMETER_FUSION 0x00002000

SYS_CFG_BITS_DISABLE_GPS1_FUSION 0x00004000

SYS_CFG_BITS_DISABLE_GPS2_FUSION 0x00008000

SYS_CFG_BITS_DISABLE_AUTO_ZERO_VELOCITY_UPDATES 0x00010000

SYS_CFG_BITS_DISABLE_AUTO_ZERO_ANGULAR_RATE_UPDATES 0x00020000

SYS_CFG_BITS_DISABLE_INS_EKF 0x00040000

SYS_CFG_BITS_DISABLE_AUTO_BIT_ON_STARTUP 0x00080000

SYS_CFG_BITS_DISABLE_WHEEL_ENCODER_FUSION 0x00100000

SYS_CFG_BITS_UNUSED3 0x00200000

SYS_CFG_BITS_BOR_LEVEL_0 0x0

SYS_CFG_BITS_BOR_LEVEL_1 0x1

SYS_CFG_BITS_BOR_LEVEL_2 0x2

SYS_CFG_BITS_BOR_LEVEL_3 0x3

SYS_CFG_BITS_BOR_THREHOLD_MASK 0x00C00000

SYS_CFG_BITS_BOR_THREHOLD_OFFSET 22

SYS_CFG_USE_REFERENCE_IMU_IN_EKF 0x01000000

SYS_CFG_EKF_REF_POINT_STATIONARY_ON_STROBE_INPUT 0x02000000

7.2.2 Enumerations and Defines

- 136/330 - ©2022

DID_GPX_FLASH_CFG.SYSCFGBITS

(eGpxSysConfigBits)

Field Value

GPX_SYS_CFG_BITS_DISABLE_VCC_RF 0x00000001

GPX_SYS_CFG_BITS_BOR_LEVEL_0 0x0

GPX_SYS_CFG_BITS_BOR_LEVEL_1 0x1

GPX_SYS_CFG_BITS_BOR_LEVEL_2 0x2

GPX_SYS_CFG_BITS_BOR_LEVEL_3 0x3

GPX_SYS_CFG_BITS_BOR_THREHOLD_MASK 0x00C00000

GPX_SYS_CFG_BITS_BOR_THREHOLD_OFFSET 22

7.2.2 Enumerations and Defines

- 137/330 - ©2022

DID_GPX_STATUS.HDWSTATUS

(eGPXHdwStatusFlags)

7.2.2 Enumerations and Defines

- 138/330 - ©2022

Field Value

GPX_HDW_STATUS_GNSS1_SATELLITE_RX 0x00000001

GPX_HDW_STATUS_GNSS2_SATELLITE_RX 0x00000002

GPX_HDW_STATUS_GNSS1_TIME_OF_WEEK_VALID 0x00000004

GPX_HDW_STATUS_GNSS2_TIME_OF_WEEK_VALID 0x00000008

GPX_HDW_STATUS_GNSS1_RESET_COUNT_MASK 0x00000070

GPX_HDW_STATUS_GNSS1_RESET_COUNT_OFFSET 4

GPX_HDW_STATUS_FAULT_GNSS1_INIT 0x00000080

GPX_HDW_STATUS_GNSS1_FAULT_FLAG_OFFSET 7

GPX_HDW_STATUS_GNSS2_RESET_COUNT_MASK 0x00000700

GPX_HDW_STATUS_GNSS2_RESET_COUNT_OFFSET 8

GPX_HDW_STATUS_FAULT_GNSS2_INIT 0x00000800

GPX_HDW_STATUS_GNSS2_FAULT_FLAG_OFFSET 11

GPX_HDW_STATUS_GNSS_FW_UPDATE_REQUIRED 0x00001000

GPX_HDW_STATUS_UNUSED 0x00002000

GPX_HDW_STATUS_SYSTEM_RESET_REQUIRED 0x00004000

GPX_HDW_STATUS_FLASH_WRITE_PENDING 0x00008000

GPX_HDW_STATUS_ERR_COM_TX_LIMITED 0x00010000

GPX_HDW_STATUS_ERR_COM_RX_OVERRUN 0x00020000

GPX_HDW_STATUS_ERR_NO_GPS1_PPS 0x00040000

GPX_HDW_STATUS_ERR_NO_GPS2_PPS 0x00080000

GPX_HDW_STATUS_ERR_PPS_MASK 0x000C0000

GPX_HDW_STATUS_ERR_LOW_CNO_GPS1 0x00100000

GPX_HDW_STATUS_ERR_LOW_CNO_GPS2 0x00200000

GPX_HDW_STATUS_ERR_CNO_GPS1_IR 0x00400000

GPX_HDW_STATUS_ERR_CNO_GPS2_IR 0x00800000

GPX_HDW_STATUS_ERR_CNO_MASK 0x00F00000

GPX_HDW_STATUS_BIT_RUNNING 0x01000000

GPX_HDW_STATUS_BIT_PASSED 0x02000000

GPX_HDW_STATUS_BIT_FAULT 0x03000000

GPX_HDW_STATUS_BIT_MASK 0x03000000

GPX_HDW_STATUS_BIT_OFFSET 24

GPX_HDW_STATUS_ERR_TEMPERATURE 0x04000000

GPX_HDW_STATUS_GPS_PPS_TIMESYNC 0x08000000

GPX_HDW_STATUS_RESET_CAUSE_MASK 0x70000000

GPX_HDW_STATUS_RESET_CAUSE_BACKUP_MODE 0x10000000

7.2.2 Enumerations and Defines

- 139/330 - ©2022

Field Value

GPX_HDW_STATUS_RESET_CAUSE_SOFT 0x20000000

GPX_HDW_STATUS_RESET_CAUSE_HDW 0x40000000

GPX_HDW_STATUS_FAULT_SYS_CRITICAL 0x80000000

7.2.2 Enumerations and Defines

- 140/330 - ©2022

DID_GPX_STATUS.RTKMODE

(eRTKConfigBits)

Field Value

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING 0x00000001

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING_EXTERNAL 0x00000002

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING_F9P 0x00000004

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING 0x00000008

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING_MASK (RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING|

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING_EXTERNAL)

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING_MASK (RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING|

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING_F9P)

RTK_CFG_BITS_ROVER_MODE_MASK 0x0000000F

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_SER0 0x00000010

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_SER1 0x00000020

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_SER2 0x00000040

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_USB 0x00000080

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_SER0 0x00000100

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_SER1 0x00000200

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_SER2 0x00000400

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_USB 0x00000800

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_SER0 0x00001000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_SER1 0x00002000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_SER2 0x00004000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_USB 0x00008000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_SER0 0x00010000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_SER1 0x00020000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_SER2 0x00040000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_USB 0x00080000

RTK_CFG_BITS_BASE_POS_MOVING 0x00100000

RTK_CFG_BITS_RESERVED1 0x00200000

RTK_CFG_BITS_RTK_BASE_IS_IDENTICAL_TO_ROVER 0x00400000

RTK_CFG_BITS_GPS_PORT_PASS_THROUGH 0x00800000

RTK_CFG_BITS_ROVER_MODE_ONBOARD_MASK (RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING|

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING)

RTK_CFG_BITS_ALL_MODES_MASK (RTK_CFG_BITS_ROVER_MODE_MASK|

RTK_CFG_BITS_BASE_MODE)

7.2.2 Enumerations and Defines

- 141/330 - ©2022

DID_GPX_STATUS.STATUS

(eGpxStatus)

Field Value

GPX_STATUS_COM_PARSE_ERR_COUNT_MASK 0x0000000F

GPX_STATUS_COM_PARSE_ERR_COUNT_OFFSET 0

GPX_STATUS_COM0_RX_TRAFFIC_NOT_DECTECTED 0x00000010

GPX_STATUS_COM1_RX_TRAFFIC_NOT_DECTECTED 0x00000020

GPX_STATUS_COM2_RX_TRAFFIC_NOT_DECTECTED 0x00000040

GPX_STATUS_GENERAL_FAULT_MASK 0xFFFF0000

GPX_STATUS_FAULT_RTK_QUEUE_LIMITED 0x00010000

GPX_STATUS_FAULT_GNSS_RCVR_TIME 0x00100000

GPX_STATUS_FAULT_DMA 0x00800000

GPX_STATUS_FATAL_MASK 0x1F000000

GPX_STATUS_FATAL_OFFSET 24

GPX_STATUS_FATAL_RESET_LOW_POW (int)1

GPX_STATUS_FATAL_RESET_BROWN (int)2

GPX_STATUS_FATAL_RESET_WATCHDOG (int)3

GPX_STATUS_FATAL_CPU_EXCEPTION (int)4

GPX_STATUS_FATAL_UNHANDLED_INTERRUPT (int)5

GPX_STATUS_FATAL_STACK_OVERFLOW (int)6

GPX_STATUS_FATAL_KERNEL_OOPS (int)7

GPX_STATUS_FATAL_KERNEL_PANIC (int)8

GPX_STATUS_FATAL_UNALIGNED_ACCESS (int)9

GPX_STATUS_FATAL_MEMORY_ERROR (int)10

GPX_STATUS_FATAL_BUS_ERROR (int)11

GPX_STATUS_FATAL_USAGE_ERROR (int)12

GPX_STATUS_FATAL_DIV_ZERO (int)13

GPX_STATUS_FATAL_SER0_REINIT (int)14

GPX_STATUS_FATAL_UNKNOWN 0x1F

GPX_STATUS_FAULT_RP 0x20000000

GPX_STATUS_FAULT_UNUSED 0xC0000000

7.2.2 Enumerations and Defines

- 142/330 - ©2022

DID_SYS_CMD.COMMAND

(eSystemCommand)

7.2.2 Enumerations and Defines

- 143/330 - ©2022

Field Value

SYS_CMD_NONE 0

SYS_CMD_SAVE_PERSISTENT_MESSAGES 1

SYS_CMD_ENABLE_BOOTLOADER_AND_RESET 2

SYS_CMD_ENABLE_SENSOR_STATS 3

SYS_CMD_ENABLE_RTOS_STATS 4

SYS_CMD_ZERO_MOTION 5

SYS_CMD_REF_POINT_STATIONARY 6

SYS_CMD_REF_POINT_MOVING 7

SYS_CMD_RESET_RTOS_STATS 8

SYS_CMD_ENABLE_GPS_LOW_LEVEL_CONFIG 10

SYS_CMD_DISABLE_SERIAL_PORT_BRIDGE 11

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_TO_GPS1 12

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_TO_GPS2 13

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_TO_SER0 14

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_TO_SER1 15

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_TO_SER2 16

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_SER0_TO_GPS1 17

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_TO_GPS1 18

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_TO_GPS2 19

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_TO_USB 20

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_TO_SER0 21

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_TO_SER1 22

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_TO_SER2 23

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_LOOPBACK 24

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_SER0_LOOPBACK 25

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_SER1_LOOPBACK 26

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_SER2_LOOPBACK 27

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_LOOPBACK 28

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_CUR_PORT_LOOPBACK_TESTMODE 29

SYS_CMD_GPX_ENABLE_BOOTLOADER_MODE 30

SYS_CMD_GPX_ENABLE_GNSS1_CHIPSET_BOOTLOADER 31

SYS_CMD_GPX_ENABLE_GNSS2_CHIPSET_BOOTLOADER 32

SYS_CMD_GPX_ENABLE_GNSS1_PASS_THROUGH 33

SYS_CMD_GPX_ENABLE_GNSS2_PASS_THROUGH 34

SYS_CMD_GPX_HARD_RESET_GNSS1 36

7.2.2 Enumerations and Defines

- 144/330 - ©2022

Field Value

SYS_CMD_GPX_HARD_RESET_GNSS2 37

SYS_CMD_GPX_SOFT_RESET_GPX 38

SYS_CMD_GPX_ENABLE_SERIAL_BRIDGE_CUR_PORT_LOOPBACK 39

SYS_CMD_GPX_ENABLE_SERIAL_BRIDGE_CUR_PORT_LOOPBACK_TESTMODE 40

SYS_CMD_GPX_ENABLE_RTOS_STATS 41

SYS_CMD_SET_GPX_SER0_PIN_DEFAULT 67

SYS_CMD_SET_GPX_SER0_PIN_REINIT 68

SYS_CMD_TEST_SER0_TX_PIN_LOW 70

SYS_CMD_TEST_SER0_TX_PIN_HIGH 71

SYS_CMD_TEST_SER0_TX_INPUT 72

SYS_CMD_TEST_SER0_TX_PP_NONE 80

SYS_CMD_TEST_SER0_TX_PP_U 81

SYS_CMD_TEST_SER0_TX_PP_D 82

SYS_CMD_SAVE_FLASH 97

SYS_CMD_SAVE_GPS_ASSIST_TO_FLASH_RESET 98

SYS_CMD_SOFTWARE_RESET 99

SYS_CMD_MANF_UNLOCK 1122334455

SYS_CMD_MANF_FACTORY_RESET 1357924680

SYS_CMD_MANF_CHIP_ERASE 1357924681

SYS_CMD_MANF_DOWNGRADE_CALIBRATION 1357924682

SYS_CMD_MANF_ENABLE_ROM_BOOTLOADER 1357924683

SYS_CMD_FAULT_TEST_TRIG_MALLOC 57005

SYS_CMD_FAULT_TEST_TRIG_HARD_FAULT 57006

SYS_CMD_FAULT_TEST_TRIG_WATCHDOG 57007

7.2.2 Enumerations and Defines

- 145/330 - ©2022

DID_SYS_PARAMS.GENFAULTCODE

(eGenFaultCodes)

Field Value

GFC_INS_STATE_ORUN_UVW 0x00000001

GFC_INS_STATE_ORUN_LAT 0x00000002

GFC_INS_STATE_ORUN_ALT 0x00000004

GFC_UNHANDLED_INTERRUPT 0x00000010

GFC_GNSS_CRITICAL_FAULT 0x00000020

GFC_GNSS_TX_LIMITED 0x00000040

GFC_GNSS_RX_OVERRUN 0x00000080

GFC_INIT_SENSORS 0x00000100

GFC_INIT_SPI 0x00000200

GFC_CONFIG_SPI 0x00000400

GFC_GNSS1_INIT 0x00000800

GFC_GNSS2_INIT 0x00001000

GFC_FLASH_INVALID_VALUES 0x00002000

GFC_FLASH_CHECKSUM_FAILURE 0x00004000

GFC_FLASH_WRITE_FAILURE 0x00008000

GFC_SYS_FAULT_GENERAL 0x00010000

GFC_SYS_FAULT_CRITICAL 0x00020000

GFC_SENSOR_SATURATION 0x00040000

GFC_INIT_IMU 0x00100000

GFC_INIT_BAROMETER 0x00200000

GFC_INIT_MAGNETOMETER 0x00400000

GFC_INIT_I2C 0x00800000

GFC_CHIP_ERASE_INVALID 0x01000000

GFC_EKF_GNSS_TIME_FAULT 0x02000000

GFC_GNSS_RECEIVER_TIME 0x04000000

GFC_GNSS_GENERAL_FAULT 0x08000000

GFC_GPX_STATUS_COMMON_MASK GFC_GNSS1_INIT|GFC_GNSS2_INIT|GFC_GNSS_TX_LIMITED|

GFC_GNSS_RX_OVERRUN|GFC_GNSS_CRITICAL_FAULT|

GFC_GNSS_RECEIVER_TIME|GFC_GNSS_GENERAL_FAULT

7.2.2 Enumerations and Defines

- 146/330 - ©2022

GPS NAVIGATION FIX TYPE

(eGpsNavFixStatus)

Field Value

GPS_NAV_FIX_NONE 0x00000000

GPS_NAV_FIX_POSITIONING_3D 0x00000001

GPS_NAV_FIX_POSITIONING_RTK_FLOAT 0x00000002

GPS_NAV_FIX_POSITIONING_RTK_FIX 0x00000003

7.2.2 Enumerations and Defines

- 147/330 - ©2022

GPS STATUS

(eGpsStatus)

7.2.2 Enumerations and Defines

- 148/330 - ©2022

Field Value

GPS_STATUS_NUM_SATS_USED_MASK 0x000000FF

GPS_STATUS_FIX_NONE 0x00000000

GPS_STATUS_FIX_DEAD_RECKONING_ONLY 0x00000100

GPS_STATUS_FIX_2D 0x00000200

GPS_STATUS_FIX_3D 0x00000300

GPS_STATUS_FIX_GPS_PLUS_DEAD_RECK 0x00000400

GPS_STATUS_FIX_TIME_ONLY 0x00000500

GPS_STATUS_FIX_UNUSED1 0x00000600

GPS_STATUS_FIX_UNUSED2 0x00000700

GPS_STATUS_FIX_DGPS 0x00000800

GPS_STATUS_FIX_SBAS 0x00000900

GPS_STATUS_FIX_RTK_SINGLE 0x00000A00

GPS_STATUS_FIX_RTK_FLOAT 0x00000B00

GPS_STATUS_FIX_RTK_FIX 0x00000C00

GPS_STATUS_FIX_MASK 0x00001F00

GPS_STATUS_FIX_BIT_OFFSET (int)8

GPS_STATUS_FLAGS_FIX_OK 0x00010000

GPS_STATUS_FLAGS_DGPS_USED 0x00020000

GPS_STATUS_FLAGS_RTK_FIX_AND_HOLD 0x00040000

GPS_STATUS_FLAGS_WEEK_VALID 0x00040000

GPS_STATUS_FLAGS_TOW_VALID 0x00080000

GPS_STATUS_FLAGS_GPS1_RTK_POSITION_ENABLED 0x00100000

GPS_STATUS_FLAGS_STATIC_MODE 0x00200000

GPS_STATUS_FLAGS_GPS2_RTK_COMPASS_ENABLED 0x00400000

GPS_STATUS_FLAGS_GPS1_RTK_RAW_GPS_DATA_ERROR 0x00800000

GPS_STATUS_FLAGS_GPS1_RTK_BASE_DATA_MISSING 0x01000000

GPS_STATUS_FLAGS_GPS1_RTK_BASE_POSITION_MOVING 0x02000000

GPS_STATUS_FLAGS_GPS1_RTK_BASE_POSITION_INVALID 0x03000000

GPS_STATUS_FLAGS_GPS1_RTK_BASE_POSITION_MASK 0x03000000

GPS_STATUS_FLAGS_GPS1_RTK_POSITION_VALID 0x04000000

GPS_STATUS_FLAGS_GPS2_RTK_COMPASS_VALID 0x08000000

GPS_STATUS_FLAGS_GPS2_RTK_COMPASS_BASELINE_BAD 0x00002000

GPS_STATUS_FLAGS_GPS_NMEA_DATA 0x00008000

GPS_STATUS_FLAGS_GPS_PPS_TIMESYNC 0x10000000

GPS_STATUS_FLAGS_MASK 0xFFFFE000

7.2.2 Enumerations and Defines

- 149/330 - ©2022

Field Value

GPS_STATUS_FLAGS_BIT_OFFSET (int)16

7.2.2 Enumerations and Defines

- 150/330 - ©2022

HARDWARE STATUS FLAGS

(eHdwStatusFlags)

7.2.2 Enumerations and Defines

- 151/330 - ©2022

Field Value

HDW_STATUS_MOTION_GYR 0x00000001

HDW_STATUS_MOTION_ACC 0x00000002

HDW_STATUS_MOTION_MASK 0x00000003

HDW_STATUS_IMU_FAULT_REJECT_GYR 0x00000004

HDW_STATUS_IMU_FAULT_REJECT_ACC 0x00000008

HDW_STATUS_IMU_FAULT_REJECT_MASK 0x0000000C

HDW_STATUS_GPS_SATELLITE_RX_VALID 0x00000010

HDW_STATUS_STROBE_IN_EVENT 0x00000020

HDW_STATUS_GPS_TIME_OF_WEEK_VALID 0x00000040

HDW_STATUS_REFERENCE_IMU_RX 0x00000080

HDW_STATUS_SATURATION_GYR 0x00000100

HDW_STATUS_SATURATION_ACC 0x00000200

HDW_STATUS_SATURATION_MAG 0x00000400

HDW_STATUS_SATURATION_BARO 0x00000800

HDW_STATUS_SATURATION_MASK 0x00000F00

HDW_STATUS_SATURATION_OFFSET 8

HDW_STATUS_SYSTEM_RESET_REQUIRED 0x00001000

HDW_STATUS_ERR_GPS_PPS_NOISE 0x00002000

HDW_STATUS_MAG_RECAL_COMPLETE 0x00004000

HDW_STATUS_FLASH_WRITE_PENDING 0x00008000

HDW_STATUS_ERR_COM_TX_LIMITED 0x00010000

HDW_STATUS_ERR_COM_RX_OVERRUN 0x00020000

HDW_STATUS_ERR_NO_GPS_PPS 0x00040000

HDW_STATUS_GPS_PPS_TIMESYNC 0x00080000

HDW_STATUS_COM_PARSE_ERR_COUNT_MASK 0x00F00000

HDW_STATUS_COM_PARSE_ERR_COUNT_OFFSET 20

HDW_STATUS_BIT_RUNNING 0x01000000

HDW_STATUS_BIT_PASSED 0x02000000

HDW_STATUS_BIT_FAILED 0x03000000

HDW_STATUS_BIT_MASK 0x03000000

HDW_STATUS_ERR_TEMPERATURE 0x04000000

HDW_STATUS_SPI_INTERFACE_ENABLED 0x08000000

HDW_STATUS_RESET_CAUSE_MASK 0x70000000

HDW_STATUS_RESET_CAUSE_BACKUP_MODE 0x10000000

HDW_STATUS_RESET_CAUSE_WATCHDOG_FAULT 0x20000000

7.2.2 Enumerations and Defines

- 152/330 - ©2022

IMU STATUS

(eImuStatus)

Field Value

HDW_STATUS_RESET_CAUSE_SOFT 0x30000000

HDW_STATUS_RESET_CAUSE_HDW 0x40000000

HDW_STATUS_FAULT_SYS_CRITICAL 0x80000000

Field Value

IMU_STATUS_SATURATION_IMU1_GYR 0x00000001

IMU_STATUS_SATURATION_IMU2_GYR 0x00000002

IMU_STATUS_SATURATION_IMU3_GYR 0x00000004

IMU_STATUS_SATURATION_IMU1_ACC 0x00000008

IMU_STATUS_SATURATION_IMU2_ACC 0x00000010

IMU_STATUS_SATURATION_IMU3_ACC 0x00000020

IMU_STATUS_SATURATION_MASK 0x0000003F

IMU_STATUS_MAG_UPDATE 0x00000100

IMU_STATUS_REFERENCE_IMU_PRESENT 0x00000200

IMU_STATUS_RESERVED2 0x00000400

IMU_STATUS_SATURATION_HISTORY 0x00000100

IMU_STATUS_SAMPLE_RATE_FAULT_HISTORY 0x00000200

IMU_STATUS_GYR1_OK 0x00010000

IMU_STATUS_GYR2_OK 0x00020000

IMU_STATUS_GYR3_OK 0x00040000

IMU_STATUS_ACC1_OK 0x00080000

IMU_STATUS_ACC2_OK 0x00100000

IMU_STATUS_ACC3_OK 0x00200000

IMU_STATUS_IMU1_OK (int)(IMU_STATUS_GYR1_OK|IMU_STATUS_ACC1_OK)

IMU_STATUS_IMU2_OK (int)(IMU_STATUS_GYR2_OK|IMU_STATUS_ACC2_OK)

IMU_STATUS_IMU3_OK (int)(IMU_STATUS_GYR3_OK|IMU_STATUS_ACC3_OK)

IMU_STATUS_IMU_OK_MASK 0x003F0000

IMU_STATUS_GYR_FAULT_REJECT 0x01000000

IMU_STATUS_ACC_FAULT_REJECT 0x02000000

7.2.2 Enumerations and Defines

- 153/330 - ©2022

INS STATUS FLAGS

(eInsStatusFlags)

7.2.2 Enumerations and Defines

- 154/330 - ©2022

Field Value

INS_STATUS_HDG_ALIGN_COARSE 0x00000001

INS_STATUS_VEL_ALIGN_COARSE 0x00000002

INS_STATUS_POS_ALIGN_COARSE 0x00000004

INS_STATUS_ALIGN_COARSE_MASK 0x00000007

INS_STATUS_WHEEL_AIDING_VEL 0x00000008

INS_STATUS_HDG_ALIGN_FINE 0x00000010

INS_STATUS_VEL_ALIGN_FINE 0x00000020

INS_STATUS_POS_ALIGN_FINE 0x00000040

INS_STATUS_ALIGN_FINE_MASK 0x00000070

INS_STATUS_GPS_AIDING_HEADING 0x00000080

INS_STATUS_GPS_AIDING_POS 0x00000100

INS_STATUS_GPS_UPDATE_IN_SOLUTION 0x00000200

INS_STATUS_EKF_USING_REFERENCE_IMU 0x00000400

INS_STATUS_MAG_AIDING_HEADING 0x00000800

INS_STATUS_NAV_MODE 0x00001000

INS_STATUS_STATIONARY_MODE 0x00002000

INS_STATUS_GPS_AIDING_VEL 0x00004000

INS_STATUS_KINEMATIC_CAL_GOOD 0x00008000

INS_STATUS_SOLUTION_MASK 0x000F0000

INS_STATUS_SOLUTION_OFFSET 16

INS_STATUS_SOLUTION_OFF 0

INS_STATUS_SOLUTION_ALIGNING 1

INS_STATUS_SOLUTION_NAV 3

INS_STATUS_SOLUTION_NAV_HIGH_VARIANCE 4

INS_STATUS_SOLUTION_AHRS 5

INS_STATUS_SOLUTION_AHRS_HIGH_VARIANCE 6

INS_STATUS_SOLUTION_VRS 7

INS_STATUS_SOLUTION_VRS_HIGH_VARIANCE 8

INS_STATUS_RTK_COMPASSING_BASELINE_UNSET 0x00100000

INS_STATUS_RTK_COMPASSING_BASELINE_BAD 0x00200000

INS_STATUS_RTK_COMPASSING_MASK (INS_STATUS_RTK_COMPASSING_BASELINE_UNSET|

INS_STATUS_RTK_COMPASSING_BASELINE_BAD)

INS_STATUS_MAG_RECALIBRATING 0x00400000

INS_STATUS_MAG_INTERFERENCE_OR_BAD_CAL 0x00800000

INS_STATUS_GPS_NAV_FIX_MASK 0x03000000

INS_STATUS_GPS_NAV_FIX_OFFSET 24

7.2.2 Enumerations and Defines

- 155/330 - ©2022

MAGNETOMETER RECALIBRATION MODE

(eMagCalState)

Field Value

INS_STATUS_RTK_COMPASSING_VALID 0x04000000

INS_STATUS_RTK_RAW_GPS_DATA_ERROR 0x08000000

INS_STATUS_RTK_ERR_BASE_DATA_MISSING 0x10000000

INS_STATUS_RTK_ERR_BASE_POSITION_MOVING 0x20000000

INS_STATUS_RTK_ERR_BASE_POSITION_INVALID 0x30000000

INS_STATUS_RTK_ERR_BASE_MASK 0x30000000

INS_STATUS_RTK_ERROR_MASK (INS_STATUS_RTK_RAW_GPS_DATA_ERROR|

INS_STATUS_RTK_ERR_BASE_MASK)

INS_STATUS_RTOS_TASK_PERIOD_OVERRUN 0x40000000

INS_STATUS_GENERAL_FAULT 0x80000000

Field Value

MAG_CAL_STATE_DO_NOTHING (int)0

MAG_CAL_STATE_MULTI_AXIS (int)1

MAG_CAL_STATE_SINGLE_AXIS (int)2

MAG_CAL_STATE_ABORT (int)101

MAG_CAL_STATE_RECAL_RUNNING (int)200

MAG_CAL_STATE_RECAL_COMPLETE (int)201

7.2.2 Enumerations and Defines

- 156/330 - ©2022

RTK CONFIGURATION

(eRTKConfigBits)

Field Value

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING 0x00000001

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING_EXTERNAL 0x00000002

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING_F9P 0x00000004

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING 0x00000008

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING_MASK (RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING|

RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING_EXTERNAL)

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING_MASK (RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING|

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING_F9P)

RTK_CFG_BITS_ROVER_MODE_MASK 0x0000000F

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_SER0 0x00000010

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_SER1 0x00000020

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_SER2 0x00000040

RTK_CFG_BITS_BASE_OUTPUT_GPS1_UBLOX_USB 0x00000080

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_SER0 0x00000100

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_SER1 0x00000200

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_SER2 0x00000400

RTK_CFG_BITS_BASE_OUTPUT_GPS1_RTCM3_USB 0x00000800

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_SER0 0x00001000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_SER1 0x00002000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_SER2 0x00004000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_UBLOX_USB 0x00008000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_SER0 0x00010000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_SER1 0x00020000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_SER2 0x00040000

RTK_CFG_BITS_BASE_OUTPUT_GPS2_RTCM3_USB 0x00080000

RTK_CFG_BITS_BASE_POS_MOVING 0x00100000

RTK_CFG_BITS_RESERVED1 0x00200000

RTK_CFG_BITS_RTK_BASE_IS_IDENTICAL_TO_ROVER 0x00400000

RTK_CFG_BITS_GPS_PORT_PASS_THROUGH 0x00800000

RTK_CFG_BITS_ROVER_MODE_ONBOARD_MASK (RTK_CFG_BITS_ROVER_MODE_RTK_POSITIONING|

RTK_CFG_BITS_ROVER_MODE_RTK_COMPASSING)

RTK_CFG_BITS_ALL_MODES_MASK (RTK_CFG_BITS_ROVER_MODE_MASK|

RTK_CFG_BITS_BASE_MODE)

7.2.2 Enumerations and Defines

- 157/330 - ©2022

SYSTEM CONFIGURATION

(eSysConfigBits)

Field Value

UNUSED1 0x00000001

SYS_CFG_BITS_ENABLE_MAG_CONTINUOUS_CAL 0x00000002

SYS_CFG_BITS_AUTO_MAG_RECAL 0x00000004

SYS_CFG_BITS_DISABLE_MAG_DECL_ESTIMATION 0x00000008

SYS_CFG_BITS_DISABLE_LEDS 0x00000010

Magnetometer multi-axis

SYS_CFG_BITS_MAG_RECAL_MODE_MASK 0x00000700

SYS_CFG_BITS_MAG_RECAL_MODE_OFFSET 8

SYS_CFG_BITS_MAG_ENABLE_WMM_DECLINATION 0x00000800

SYS_CFG_BITS_DISABLE_MAGNETOMETER_FUSION 0x00001000

SYS_CFG_BITS_DISABLE_BAROMETER_FUSION 0x00002000

SYS_CFG_BITS_DISABLE_GPS1_FUSION 0x00004000

SYS_CFG_BITS_DISABLE_GPS2_FUSION 0x00008000

SYS_CFG_BITS_DISABLE_AUTO_ZERO_VELOCITY_UPDATES 0x00010000

SYS_CFG_BITS_DISABLE_AUTO_ZERO_ANGULAR_RATE_UPDATES 0x00020000

SYS_CFG_BITS_DISABLE_INS_EKF 0x00040000

SYS_CFG_BITS_DISABLE_AUTO_BIT_ON_STARTUP 0x00080000

SYS_CFG_BITS_DISABLE_WHEEL_ENCODER_FUSION 0x00100000

SYS_CFG_BITS_UNUSED3 0x00200000

SYS_CFG_BITS_BOR_LEVEL_0 0x0

SYS_CFG_BITS_BOR_LEVEL_1 0x1

SYS_CFG_BITS_BOR_LEVEL_2 0x2

SYS_CFG_BITS_BOR_LEVEL_3 0x3

SYS_CFG_BITS_BOR_THREHOLD_MASK 0x00C00000

SYS_CFG_BITS_BOR_THREHOLD_OFFSET 22

SYS_CFG_USE_REFERENCE_IMU_IN_EKF 0x01000000

SYS_CFG_EKF_REF_POINT_STATIONARY_ON_STROBE_INPUT 0x02000000

7.2.2 Enumerations and Defines

- 158/330 - ©2022

7.3 Inertial Sense Binary (ISB) Protocol

The Inertial Sense binary protocol provides the most efficient way to communicate with the µINS, µAHRS, and µIMU because it

preserved the native floating point and integer binary format used in computers. Binary protocol is not human readable like

NMEA Protocol. Binary protocol uses Data Set (DID) C structures defined in SDK/src/data_sets.h of the InertialSense SDK.

7.3.1 Communication

Writing to and reading from InertialSense products is done using "Set" and "Get" commands. The following helper function

portWrite() which assists with writing data to the serial port is used throughout this document.

Setting Data

The is_comm_set_data() function will encode a message used to set data or configurations.

Getting Data

Data broadcasting or streaming is enabled by using the Realtime Message Controller (RMC) or the get data command.

GET DATA COMMAND

The is_comm_get_data() function will encode a PKT_TYPE_GET_DATA message that enables broadcast of a given message at a

multiple of the Data Source Update Rates. Set the data rate (period multiple) to zero disable message broadcast and pull a single

packet of data. Set the data size and offset to zero to request the entire data set.

DATA SOURCE UPDATE RATES

*DID_PIMU integration period (dt) and output data rate are the same as DID_FLASH_CONFIG.startupNavDtMs and cannot be output at

any other rate. If a different output data rate is desired, DID_IMU which is derived from DID_PIMU can be used instead.

static int portWrite(int port, const unsigned char* buf, int len)

{

 return serialPortWrite(&serialPort, buf, len);

}

// Set INS output Euler rotation in radians to 90 degrees roll for mounting

void setInsOutputRotation()

{

 float rotation[3] = { 90.0f*C_DEG2RAD_F, 0.0f, 0.0f };

 is_comm_set_data(portWrite, 0, comm, DID_FLASH_CONFIG, sizeof(float) * 3, offsetof(nvm_flash_cfg_t, insRotation), rotation);

}

// Ask for INS message w/ update 40ms period (4ms source period x 10). Set data rate to zero to disable broadcast and pull a single packet.

is_comm_get_data(portWrite, 0, comm, DID_INS_1, 0, 0, 10);

DID Default Update Rate (Period)

DID_INS_[1-4] (7ms default) Configured with DID_FLASH_CONFIG.startupNavDtMs

DID_IMU,

DID_PIMU
*

(14ms default) Configured with DID_FLASH_CONFIG.startupImuDtMs

DID_BAROMETER ~20ms

DID_MAGNETOMETER_[1-2] ~20ms

DID_GPS[1-2]_[X]

(Any DID beginning with DID_GPS)

(200ms default) Configured with DID_FLASH_CONFIG. startupGPSDtMs

All other DIDs 1ms

7.3 Inertial Sense Binary (ISB) Protocol

- 159/330 - ©2022

REALTIME MESSAGE CONTROLLER (RMC)

The RMC is used to enable message broadcasting and provides updates from onboard data as soon as it becomes available with

minimal latency. All RMC messages can be enabled using the Get Data Command, which is the preferred method, or by directly

setting the RMC bits. The RMC bits are listed below. Message data rates are listed in the Data Source Update Rates table.

The following is an example of how to use the RMC. The rmc.options field controls whether RMC commands are applied to other

serial ports. rmc.options = 0 will apply the command to the current serial port.

The update rate of the EKF is set by DID_FLASH_CONFIG.startupNavDtMs (reboot is required to apply the change).

Independently, the DID_INS_x broadcast period multiple can be used to set the output data rate down to 1ms.

PERSISTENT MESSAGES

The persistent messages option saves the current data stream configuration to flash memory for use following reboot,

eliminating the need to re-enable messages following a reset or power cycle.

To save persistent messages - (to flash memory), bitwise OR RMC_OPTIONS_PERSISTENT (0x200) with the RMC option field or set

DID_CONFIG.system = 0x00000001 and DID_CONFIG.system = 0xFFFFFFFE. See the save persistent messages example in

the Binary Communications example project.

To disable persistent messages - a stop all broadcasts packet followed by a save persistent messages command.

NMEA persistent messages are also available.

Enabling Persistent Messages - EvalTool

Enable the desired messages in the EvalTool "Data Sets" tab.

Press the "Save Persistent" button in the EvalTool "Data Logs" tab to store the current message configuration to flash memory

for use following reboot.

Reset the system and verify the messages are automatically streaming. You can use the EvalTool->Data Logs dialog to view the

streaming messages.

To disable all persistent messages using the EvalTool, click the "Stop Streaming" button and then "Save Persistent" button.

Enabling Persistent Messages - CLTool

Persistent messages are enabled using the CLTool by including the -persistent option along with the options for the desired

messages in the command line.

RMC Message

RMC_BITS_INS[1-4]

RMC_BITS_DUAL_IMU, RMC_BITS_PIMU

RMC_BITS_BAROMETER

RMC_BITS_MAGNETOMETER[1-2]

RMC_BITS_GPS[1-2]_NAV

RMC_BITS_GPS_RTK_NAV, RMC_BITS_GPS_RTK_MISC

RMC_BITS_STROBE_IN_TIME

 rmc_t rmc;

 // Enable broadcasts of DID_INS_1 and DID_GPS_NAV

 rmc.bits = RMC_BITS_INS1 | RMC_BITS_GPS1_POS;

 // Remember configuration following reboot for automatic data streaming.

 rmc.options = RMC_OPTIONS_PERSISTENT;

 is_comm_set_data(portWrite, 0, comm, DID_RMC, 0, 0, &rmc);

•

•

•

•

•

cltool -c /dev/ttyS3 -persistent -msgINS2 -msgGPS

7.3.1 Communication

- 160/330 - ©2022

EXAMPLE PROJECTS

Examples on how to use the Inertial Sense SDK for binary communications are found in the Binary Communications Example

Project and cltool project. NMEA communications examples are found in the NMEA Example Project.

Parsing Data

The ISComm library in the InertialSenseSDK provides a communications parser that can parse InertialSense binary protocol as

well as other protocols.

ONE BYTE (SIMPLE METHOD)

The following parser code is simpler to implement. This method uses the is_comm_parse_byte() function to parse one byte at a

time of a data stream. The return value is a non-zero protocol_type_t when valid data is found.

SET OF BYTES (FAST METHOD)

The following parser code uses less processor time to parse data by copying multiple bytes at a time. This method uses

is_comm_free() and is_comm_parse() along with a serial port read or buffer copy. The return value is a non-zero protocol_type_t

when valid data is found.

7.3.2 ISB Packet Overview

The IMX and GPX communicate using the Inertial Sense Binary (ISB) protocol. This section details the ISB protocol packet

structure specific for protocol 2.x (software releases 2.x). Refer to the release 1.x ISB protocol document for a description of

protocol 1.x (software releases 1.x). The Inertial-Sense-SDK ISComm provides functions to encode and decode ISB packets.

 uint8_t c;

 protocol_type_t ptype;

 // Read from serial buffer until empty

 while (serialPortReadChar(&s_serialPort, &c) > 0)

 {

 // timeMs = current_timeMs();

 switch (is_comm_parse_byte(&comm, inByte))

 {

 case _PTYPE_INERTIAL_SENSE_DATA:

 break;

 case _PTYPE_UBLOX:

 break;

 case _PTYPE_RTCM3:

 break;

 case _PTYPE_NMEA:

 break;

 }

 }

 // Read a set of bytes (fast method)

 protocol_type_t ptype;

 // Get available size of comm buffer. is_comm_free() modifies comm->rxBuf pointers, call it before using comm->rxBuf.tail.

 int n = is_comm_free(comm);

 // Read data directly into comm buffer

 if ((n = serialPortRead(comm->rxBuf.tail, n)))

 {

 // Update comm buffer tail pointer

 comm->rxBuf.tail += n;

 // Search comm buffer for valid packets

 while ((ptype = is_comm_parse(comm)) != _PTYPE_NONE)

 {

 switch (ptype)

 {

 case _PTYPE_INERTIAL_SENSE_DATA:

 case _PTYPE_INERTIAL_SENSE_CMD:

 break;

 case _PTYPE_UBLOX:

 break;

 case _PTYPE_RTCM3:

 break;

 case _PTYPE_NMEA:

 break;

 }

 }

 }

7.3.2 ISB Packet Overview

- 161/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/blob/main/src/ISComm.h
https://github.com/inertialsense/InertialSenseSDK/
https://github.com/inertialsense/docs.inertialsense.com/blob/1.11.0/docs/user-manual/com-protocol/binary.md
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.h

ISB Packet

The ISB packet structure is defined in the typedef packet_t found in ISComm.h.

HEADER TYPE AND FLAGS

The packet type and flags are found in the byte at offset 2 in the ISB packet. The Type is the lower nibble and the Flags are the

upper nibble. The packet and is defined in ISComm.h.

HEADER DID

The data ID (DID) values are defined at the top of data_sets.h and identify which data set is requested or contained in the ISB

packet.

HEADER PAYLOAD SIZE

The ISB packet payload size is a uint16 that will

FOOTER CHECKSUM

The ISB packet footer contains a Fletcher-16 (16-bit integer). The following algorithm is used for this checksum and is found in

ISComm.h.

The ISB packet footer checksum is computed using the Fletcher-16 algorithm starting with an initial value of zero and

sequencing over the entire packet (excluding the two footer checksum bytes).

typedef enum

{

 PKT_TYPE_INVALID = 0, // Invalid packet id

 PKT_TYPE_ACK = 1, // (ACK) received valid packet

 PKT_TYPE_NACK = 2, // (NACK) received invalid packet

 PKT_TYPE_GET_DATA = 3, // Request for data to be broadcast, response is PKT_TYPE_DATA. See data structures for list of possible

broadcast data.

 PKT_TYPE_DATA = 4, // Data sent in response to PKT_TYPE_GET_DATA (no PKT_TYPE_ACK is sent)

 PKT_TYPE_SET_DATA = 5, // Data sent, such as configuration options. PKT_TYPE_ACK is sent in response.

 PKT_TYPE_STOP_BROADCASTS_ALL_PORTS = 6, // Stop all data broadcasts on all ports. Responds with an ACK

 PKT_TYPE_STOP_DID_BROADCAST = 7, // Stop a specific broadcast

 PKT_TYPE_STOP_BROADCASTS_CURRENT_PORT = 8, // Stop all data broadcasts on current port. Responds with an ACK

 PKT_TYPE_COUNT = 9, // The number of packet identifiers, keep this at the end!

 PKT_TYPE_MAX_COUNT = 16, // The maximum count of packet identifiers, 0x1F (PACKET_INFO_ID_MASK)

 PKT_TYPE_MASK = 0x0F, // ISB packet type bitmask

 ISB_FLAGS_MASK = 0xF0, // ISB packet flags bitmask (4 bits upper nibble)

 ISB_FLAGS_EXTENDED_PAYLOAD = 0x10, // Payload is larger than 2048 bytes and extends into next packet.

 ISB_FLAGS_PAYLOAD_W_OFFSET = 0x20, // The first two bytes of the payload are the byte offset of the payload data into the data set.

} eISBPacketFlags;

uint16_t is_comm_fletcher16(uint16_t cksum_init, const void* data, uint32_t size)

{

 checksum16_u cksum;

 cksum.ck = cksum_init;

 for (uint32_t i=0; i<size; i++)

 {

 cksum.a += ((uint8_t*)data)[i];

 cksum.b += cksum.a;

 }

 return cksum.ck;

}

7.3.2 ISB Packet Overview

- 162/330 - ©2022

https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.h#L33
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.h

ISB Packet with Data Offset

*The first two bytes of the payload may be a uint16 offset for the data offset in the target data set when the

ISB_FLAGS_PAYLOAD_W_OFFSET flag is set in the header flags.

ISB Packet with No Payload

Packet types PKT_TYPE_STOP_BROADCASTS_ALL_PORTS , PKT_TYPE_STOP_DID_BROADCAST , PKT_TYPE_STOP_BROADCASTS_CURRENT_PORT have

payload size zero and no payload.

ISB Get Data Packet

The Get Data packet of type PKT_TYPE_GET_DATA is used to query specific data according to data set ID, size, offset, and streaming

period multiple. The payload size is 8. Setting the payload period to zero will result in a single response and a continuous stream

of data for a non-zero period.

7.3.3 Stop Broadcasts Packets

The NEMA $STPB stop broadcasts command is recommended as the protocol version-independent method for disabling data

streaming.

Two stop all broadcasts packets are special packet types that will disable all binary and NMEA data streams. The following

functions calls are provided in the SDK to generate the stop all broadcasts packets.

All Ports

Note

7.3.3 Stop Broadcasts Packets

- 163/330 - ©2022

The hexadecimal string to stop all broadcasts on all ports is:

Current Port Only

The hexadecimal string to stop all broadcasts on the current port is:

7.3.4 RMC Presets

RMC Preset Stream PPD

The hexadecimal string for the RMC Preset enable PPD is:

is_comm_stop_broadcasts_all_ports(portWrite, 0, &comm);

0xef 0x49 0x06 0x00 0x00 0x00 0x3e 0x1f

is_comm_stop_broadcasts_current_port(portWrite, 0, &comm);

0xef 0x49 0x08 0x00 0x00 0x00 0x40 0x27

0xef 0x49 0x05 0x09 0x0c 0x00 0xe2 0x3c 0x35 0x01 0x90 0x00 0x00 0xc0 0x00 0x01 0x00 0x00 0xf7 0xb0

7.3.4 RMC Presets

- 164/330 - ©2022

7.4 NMEA 0183 (ASCII) Protocol

For simple use, the Inertial Sense device supports a human-readable NMEA communications protocol based on NMEA 0183. The

NMEA protocol is human readable from in a command line terminal but is less optimal than the binary protocol in terms of

message length for the same amount of data.

7.4.1 Communications Examples

The NMEA Communications Example Project demonstrates how to implement the protocol.

7.4.2 Packet Structure

The Inertial Sense NMEA protocol follows the standard NMEA 0183 message structure:

1 byte – Start packet, $ (0x24)

n bytes – packet identifier

1 byte – comma (0x2C)

n bytes – comma separated list of data, can include decimals and text

1 byte – checksum marker, * (0x2A)

2 bytes – checksum in hex format (i.e. f5 or 0a), 0 padded and lowercase

2 bytes – End packet, \r\n (0x0D , 0x0A)

The packet checksum is an 8 bit integer and is calculated by calculating the exclusive OR of all bytes in between and not

including the $ and * bytes. The packet checksum byte is converted to a 2 byte NMEA hex code, and left padded with 0 if

necessary to ensure that it is always 2 bytes. The checksum is always lowercase hexadecimal characters. See NMEA 0183

message structure for more details. The NMEA string checksum is automatically computed and appended to string when using

the InertialSense SDK serialPortWriteAscii function or can be generated using an online checksum calculator. For example: MTK

NMEA checksum calculator

7.4.3 Persistent Messages

The persistent messages option saves the current data stream configuration to flash memory for use following reboot,

eliminating the need to re-enable messages following a reset or power cycle.

To save current NMEA persistent messages - send the $PERS command.

To disable persistent messages - send STPB](#stpb) followed by [PERS.

Binary persistent messages are also available.

Enabling Persistent Messages - EvalTool

To enable persistent NMEA messages using the EvalTool:

Enable the desired NMEA messages in the EvalTool "Data Sets" tab. Select DID_NMEA_BCAST_PERIOD in the DID menu and

set the desired NMEA messages period to a non-zero value.

Press the "Save Persistent" button in the EvalTool "Data Logs" tab to store the current message configuration to flash memory.

Reset the IMX and verify the messages are automatically streaming. You can use a generic serial port program like putty or

the EvalTool->Data Logs->Data Log->Messages dialog to view the NMEA messages.

To disable all persistent messages using the EvalTool, click the "Stop Streaming" button and then "Save Persistent" button.

•

•

•

•

•

•

•

•

•

•

•

•

7.4 NMEA 0183 (ASCII) Protocol

- 165/330 - ©2022

https://en.wikipedia.org/wiki/NMEA_0183
https://en.wikipedia.org/wiki/NMEA_0183
https://github.com/inertialsense/InertialSenseSDK/blob/main/src/serialPort.c#L219-L268
http://www.hhhh.org/wiml/proj/nmeaxor.html
http://www.hhhh.org/wiml/proj/nmeaxor.html

7.4.4 NMEA Input Messages

The following NMEA messages can be received by the IMX.

ASCE

Enable NMEA message output streaming by specifying the NMEA message identifier or ID and broadcast period. The period is

the multiple of the data source period (i.e. a GNSS message with period multiple of 2 and data source period of 200 ms (5 Hz)

will broadcast every 400 ms). “xx” is the two-character checksum. A period of 0 will disable message streaming. The broadcast

period for each message is configurable as a period multiple of the Data Source Update Rates. Up to 20 different NMEA

messages can be enabled by repeating the message ID and period sequence within an ASCE message.

The following examples will enable the same NMEA message output:

Message Description

$ASCE*14\r\n Query the broadcast rate of NMEA output messages.

ASCE Set the broadcast period of selected NMEA output messages.

$INFO*0E\r\n Query device information.

$SRST*06\r\n Software reset.

$PERS*14\r\n Save persistent messages to flash.

$STPB*15\r\n Stop broadcast of all messages (NMEA and binary) on all ports.

$STPC*14\r\n Stop broadcast of all messages (NMEA and binary) on current port.

$ASCE,OPTIONS,(ID,PERIOD)*xx\r\n

$ASCE,0,PPIMU,1,PINS2,10,GNGGA,1*26\r\n

$ASCE,0,2,1,5,10,7,1*39\r\n

Index Field Description

1 OPTIONS Port selection. Combine by adding options together:

0=current, 1=ser0, 2=ser1, 4=ser2, 8=USB,

512=persistent (remember after reset)

Start of repeated group (1...20 times)

2+n*2 ID Either 1.) message identifier string (i.e. PPIMU, PINS1, GNGGA) excluding packet start

character $ or 2.) message ID (eNmeaAsciiMsgId) of the NMEA message to be streamed.

See the message ID in the NMEA output messages table.

3+n*2 PERIOD Broadcast period multiple for specified message. Zero disables streaming.

End of repeated group (1...20 times)

7.4.4 NMEA Input Messages

- 166/330 - ©2022

EXAMPLE MESSAGES

The following examples NMEA messages enable IMX data streaming output. The data period is 1, full data source rates, for those

that do not specify the output rate.

** These rates assume the default settings for data source rates.

PERS

Send this command to save current persistent messages to flash memory for use following reboot. This eliminates the need to re-

enable messages following a reset or power cycle. In order to disable persistent messages, all messages must be disabled and

then the 'save persistent messages' command should be sent.

STPB

Stop all broadcasts (both binary and NMEA) on all ports by sending the following packet:

The hexadecimal equivalent is:

Message Data (Output Rate)**

$ASCE,0,6,1,7,1,8,1,10,1,14,1*04\r\n GGA, GLL, GSA, ZDA, GSV (all at 5Hz)

$ASCE,0,5,2,2,1,7,1*0A\r\n PINS2 (31.25 Hz), PPIMU (62.5Hz), GGA (5Hz)

$ASCE,0,0,1*09\r\n PIMU

$ASCE,0,1,1*08\r\n PPIMU

$ASCE,0,2,1*0B\r\n PRIMU

$ASCE,0,3,1*0A\r\n PINS1

$ASCE,0,4,1*0D\r\n PINS2

$ASCE,0,5,1*0C\r\n PGPSP

$ASCE,0,6,1*0F\r\n GGA

$ASCE,0,7,1*0E\r\n GLL

$ASCE,0,8,1*01\r\n GSA

$ASCE,0,9,1*00\r\n RMC

$ASCE,0,10,1*38\r\n ZDA

$ASCE,0,11,1*39\r\n PASHR

$ASCE,0,12,1*3A\r\n PSTRB

$ASCE,0,13,1*3B\r\n INFO

$ASCE,0,14,1*3C\r\n GSV

$ASCE,0,15,1*3D\r\n VTG

$PERS*14\r\n

$STPB*15\r\n

24 53 54 50 42 2A 31 35 0D 0A

7.4.4 NMEA Input Messages

- 167/330 - ©2022

STPC

Stop all broadcasts (both binary and NMEA) on the current port by sending the following packet:

The hexadecimal equivalent is:

7.4.5 NMEA Output Messages

The following NMEA messages can be sent by the IMX. The message ID (eNmeaAsciiMsgId) is used with the $ASCE message to

enable message streaming.

The field codes used in the message descriptions are: lf = double, f = float, d = int.

NMEA Output GNSS Source

Following IMX power on/reset the default source for NMEA output is GPS1 if available or GPS2 if GPS1 is disabled. This source

is reported via bit SYS_STATUS_PRIMARY_GNSS_SOURCE_IS_GNSS2 (0x00000004) of DID_SYS_PARAMS.sysStatus where

cleared means GNSS1 and set means GNSS2. Users may manually set or clear this bit to control the NMEA output GNSS source.

PIMU

IMU sensor data (3-axis gyros and accelerometers) in the body frame.

$STPC*14\r\n

24 53 54 50 43 2A 31 34 0D 0A

Identifier ID Description

ASCB Broadcast period of NMEA output messages.

PIMU 1 IMU data (3-axis gyros and accelerometers) in the body frame.

PPIMU 2 Preintegrated IMU: delta theta (rad) and delta velocity (m/s).

PRIMU 3 Raw IMU data (3-axis gyros and accelerometers) in the body frame.

PINS1 4 INS output: euler rotation w/ respect to NED, NED position from reference LLA.

PINS2 5 INS output: quaternion rotation w/ respect to NED, ellipsoid altitude.

PGPSP 6 GPS position data.

GGA 7 Standard NMEA GGA GPS 3D location, fix, and accuracy.

GLL 8 Standard NMEA GLL GPS 2D location and time.

GSA 9 Standard NMEA GSA GPS DOP and active satellites.

RMC 10 Standard NMEA RMC Recommended minimum specific GPS/Transit data.

ZDA 11 Standard NMEA ZDA UTC Time/Date message.

PASHR 12 Standard NMEA PASHR (euler) message.

PSTRB 13 Strobe event input time.

INFO 14 Device information.

GSV 15 Standard NMEA GSV satellite info (all active constellations sent with corresponding

talker IDs).

VTG 16 Standard NMEA VTG track made good and speed over ground.

7.4.5 NMEA Output Messages

- 168/330 - ©2022

PPIMU

Preintegrated inertial measurement unit (IMU) sensor data, delta theta in radians and delta velocity in m/s in the body frame.

Also known as coning and sculling integrals.

PRIMU

Raw IMU sensor data (3-axis gyros and accelerometers) in the body frame (up to 1KHz). Use this IMU data for output data rates

faster than DID_FLASH_CONFIG.startupNavDtMs. Otherwise we recommend use of PIMU or PPIMU as they are oversampled

and contain less noise. 0 to disable.

$PIMU,lf,f,f,f,f,f,f*xx\r\n

 1 2 3 4 5 6 7

Index Field Units Description

1 time sec Time since system power up

3 IMU pqr[0] rad/sec IMU angular rate gyro – X

2 IMU pqr[1] rad/sec IMU angular rate gyro – Y

4 IMU pqr[2] rad/sec IMU angular rate gyro – Z

5 IMU acc[0] m/s2 IMU linear acceleration – X

6 IMU acc[1] m/s2 IMU linear acceleration – Y

7 IMU acc[2] m/s2 IMU linear acceleration – Z

$PPIMU,lf,f,f,f,f,f,f,f*xx\r\n

 1 2 3 4 5 6 7 8

Index Field Units Description

1 time sec Time since system power up

2 theta[0] rad IMU delta theta integral – X

3 theta[1] rad IMU delta theta integral – Y

4 theta[2] rad IMU delta theta integral – Z

8 vel[0] m/s IMU delta velocity integral – X

9 vel[1] m/s IMU delta velocity integral – Y

10 vel[2] m/s IMU delta velocity integral – Z

14 dt s Integration period for delta theta vel

7.4.5 NMEA Output Messages

- 169/330 - ©2022

PINS1

INS output with Euler angles and NED offset from the reference LLA.

PINS2

INS output with quaternion attitude.

$PRIMU,lf,f,f,f,f,f,f*xx\r\n

 1 2 3 4 5 6 7

Index Field Units Description

1 time sec Time since system power up

3 Raw IMU pqr[0] rad/sec Raw IMU angular rate gyro – X

2 Raw IMU pqr[1] rad/sec Raw IMU angular rate gyro – Y

4 Raw IMU pqr[2] rad/sec Raw IMU angular rate gyro – Z

5 Raw IMU acc[0] m/s2 Raw IMU linear acceleration – X

6 Raw IMU acc[1] m/s2 Raw IMU linear acceleration – Y

7 Raw IMU acc[2] m/s2 Raw IMU linear acceleration – Z

$PINS1,lf,d,d,d,f,f,f,f,f,f,lf,lf,lf,f,f,f*xx\r\n

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Index Field Units Description

1 timeOfWeek sec Seconds since Sunday morning in GMT

2 GPS week weeks Number of weeks since January 1
st

 of 1980 in GMT

3 insStatus INS Status Flags

4 hdwStatus Hardware Status Flags

5 theta[0] rad Euler angle – roll

6 theta[1] rad Euler angle – pitch

7 theta[2] rad Euler angle – yaw

8 UVW[0] m/s Velocity in body frame – X

9 UVW[1] m/s Velocity in body frame – Y

10 UVW[2] m/s Velocity in body frame – Z

11 Latitude deg WGS84 Latitude

12 Longitude deg WGS84 Longitude

13 HAE Altitude m Height above ellipsoid (vertical elevation)

14 NED[0] m Offset from reference LLA – North

15 NED[1] m Offset from reference LLA – East

16 NED[2] m Offset from reference LLA – Down

7.4.5 NMEA Output Messages

- 170/330 - ©2022

PGPSP

GPS navigation data.

$PINS2,lf,d,d,d,f,f,f,f,f,f,f,lf,lf,lf*xx\r\n

 1 2 3 4 5 6 7 8 9 0 1 2 3 4

Index Field Units Description

1 timeOfWeek sec Seconds since Sunday morning in GMT

2 GPS week weeks Number of weeks since January 1
st

 of 1980 in GMT

3 insStatus INS Status Flags

4 hdwStatus Hardware Status Flags

5 qn2b[0] Quaternion rotation (NED to body) – W

6 qn2b[1] Quaternion rotation (NED to body) – X

7 qn2b[2] Quaternion rotation (NED to body) – Y

8 qn2b[3] Quaternion rotation (NED to body) – Z

9 UVW[0] m/s Velocity in body frame – X

10 UVW[1] m/s Velocity in body frame – Y

11 UVW[2] m/s Velocity in body frame – Z

12 Latitude deg WGS84 Latitude

13 Longitude deg WGS84 Longitude

14 HAE altitude m Height above ellipsoid (vertical elevation)

$PGPSP,d,d,d,lf,lf,lf,f,f,f,f,f,f,f,f,f,f*xx\r\n

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

7.4.5 NMEA Output Messages

- 171/330 - ©2022

GGA

NMEA GPS fix, 3D location and accuracy data.

$PGPSP,337272200,2031,1075643160,40.33057800,-111.72581630,1406.39,1425.18,0.95,0.37,0.55,-0.02,0.02,-0.03,0.17,39.5,337182.4521*4d\r\n

Index Field Units Description

1 timeOfWeekMs ms GPS time of week in milliseconds since Sunday morning in GMT

2 GPS week weeks GPS number of weeks since January 1
st

 of 1980 in GMT

3 status (see eGpsStatus) GPS status: [0x000000xx] number of satellites used,

[0x0000xx00] fix type, [0x00xx0000] status flags

4 Latitude deg WGS84 Latitude

5 Longitude deg WGS84 Longitude

6 HAE altitude m Height above WGS84 ellipsoid

7 MSL altitude m Elevation above mean sea level

8 pDOP m Position dilution of precision

9 hAcc m Horizontal accuracy

10 vAcc m Vertical accuracy

11 Velocity X m/s ECEF X velocity

12 Velocity Y m/s ECEF Y velocity

13 Velocity Z m/s ECEF Z velocity

14 sAcc m/s Speed accuracy

15 cnoMean dBHz Average of all satellite carrier to noise ratios (signal strengths) that non-

zero

16 towOffset s Time sync offset between local time since boot up to GPS time of week

in seconds. Add this to IMU and sensor time to get GPS time of week in

seconds.

17 leapS s GPS leap second (GPS-UTC) offset. Receiver's best knowledge of the

leap seconds offset from UTC to GPS time. Subtract from GPS time of

week to get UTC time of week.

7.4.5 NMEA Output Messages

- 172/330 - ©2022

GLL

NMEA geographic position, latitude / longitude and time.

GSA

NMEA GPS DOP and active satellites.

$GPGGA,204153.200,4003.34331,N,11139.51872,W,1,25,0.93,1433.997,M,18.82,M,,*6d\r\n

 1 2 3 4 5 6 7 8 9 0 1 2 3 4

Index Field Units Description Example

1 HHMMSS.sss UTC time (fix taken at 20:41:53.200 UTC) 204153.200

2,3 Latitude deg,min WGS84 latitude (DDmm.mmmmm,N) 4003.34331,N

4,5 Longitude deg,min WGS84 longitude (DDDmm.mmmmm,E) 11139.51872,W

6 Fix quality 0 = invalid, 1 = GPS fix (SPS), 2 = DGPS fix, 3 =

PPS fix, 4 = RTK Fix, 5 = RTK Float, 6 = estimated

(dead reckoning), 7 = Manual input mode, 8 =

Simulation mode

1

7 # Satellites Number of satellites in use 15

8 hDop m Horizontal dilution of precision 0.9

9,10 MSL_altitude m Elevation above mean sea level (MSL) 545.4,M

11,12 Undulation m Undulation of geoid. Height of the geoid above the

WGS84 ellipsoid.

46.9,M

13 empty s Time since last DGPS update

14 empty DGPS station ID number

$GPGLL,4916.45123,N,12311.12324,W,225444.800,A*33\r\n

 1 2 3 4 5 6

Index Field Units Description Example

1,2 Latitude deg,min WGS84 latitude (DDmm.mmmmm,N) 4916.45123,N

3,4 Longitude deg,min WGS84 longitude

(DDDmm.mmmmm,E)

12311.12324,W

5 HHMMSS.sss UTC time (fix taken at 22:54:44.8

UTC)

225444.800

6 Valid Data valid (A=active, V=void) A

7.4.5 NMEA Output Messages

- 173/330 - ©2022

RMC

NMEA GPS recommended minimum specific GPS/Transit data.

VTG

NMEA GPS track made good and speed over ground.

$GPGSA,A,3,04,05,,09,12,,,24,,,,,2.5,1.3,2.1*39\r\n

 1 2 3 4 ... 15 16 17

Index Field Units Description Example

1 Auto selection of 2D or 3D fix (M =

manual)

A

2 Fix quality Fix quality (1 = none, 2 = 2D, 3 = 3D) 3

3-14 Sat ID Satellite ID (PRNs) 04,05,,09,12,,,24,,,,,

15 pDop m Dilution of precision 2.5

16 hDop m Horizontal dilution of precision 1.3

17 vDop m Vertical dilution of precision 2.1

eg1. $GPRMC,081836,A,3751.65,S,14507.36,E,000.0,360.0,130998,011.3,E*62\r\n

eg2. $GPRMC,225446,A,4916.45,N,12311.12,W,000.5,054.7,191194,020.3,E*68\r\n

 225446 Time of fix 22:54:46 UTC

 A Navigation receiver warning A = OK, V = warning

 4916.45,N Latitude 49 deg. 16.45 min North

 12311.12,W Longitude 123 deg. 11.12 min West

 000.5 Speed over ground, Knots

 054.7 Course Made Good, True

 191194 Date of fix 19 November 1994

 020.3,E Magnetic variation 20.3 deg East

 *68 mandatory checksum

eg3. $GPRMC,220516,A,5133.82,N,00042.24,W,173.8,231.8,130694,004.2,W*70\r\n

 1 2 3 4 5 6 7 8 9 10 11 12

 1 220516 Time Stamp

 2 A validity - A-ok, V-invalid

 3 5133.82 current Latitude

 4 N North/South

 5 00042.24 current Longitude

 6 W East/West

 7 173.8 Speed in knots

 8 231.8 True course

 9 130694 Date Stamp

 10 004.2 Variation

 11 W East/West

 12 *70 checksum

eg4. $GPRMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,x.x,x.x,ddmmyy,x.x,a*hh\r\n

1 = UTC of position fix

2 = Data status (V=navigation receiver warning)

3 = Latitude of fix

4 = N or S

5 = Longitude of fix

6 = E or W

7 = Speed over ground in knots

8 = Track made good in degrees True

9 = UT date

10 = Magnetic variation degrees (Easterly var. subtracts from true course)

11 = E or W

12 = Checksum

eg1. $GPVTG,140.88,T,,M,8.04,N,14.89,K,D*05\r\n

0 Message ID $GPVTG

1 Track made good (degrees true)

2 T: track made good is relative to true north

3 Track made good (degrees magnetic)

4 M: track made good is relative to magnetic north

5 Speed, in knots

6 N: speed is measured in knots

7 Speed over ground in kilometers/hour (kph)

8 K: speed over ground is measured in kph

9 Mode indicator:

7.4.5 NMEA Output Messages

- 174/330 - ©2022

ZDA

NMEA GPS UTC Time and Date specification.

GSV

NMEA GNSS satellites in view. xx corresponds to a constellation talker ID, shown in the table below.

Contains the number of sats in view, PRN numbers, elevation, azimuth and SNR value. Each message includes up to four

satellites. When there are more than 4 sats for a constellation, multiple messages are sent. The total number of messages and the

message number are included in each message.

Example:

Example NMEA version 4.11:

 A: Autonomous mode

 D: Differential mode

 E: Estimated (dead reckoning) mode

 M: Manual Input mode

 S: Simulator mode

 N: Data not valid

10 The checksum data, always begins with *

$GPZDA,213301.200,31,08,2023,00,00*41\r\n

 1 2 3 4 5 6

Index Field Units Description Example

1 HHMMSS.sss UTC Time 213301.200

2 Day Day 31

3 Month Month 08

4 Year Year 2023

5 localHrs Local time zone hours 00

6 localMin Local time zone minutes 00

$GPGSV,6,1,23,02,40,310,43,08,07,324,31,10,48,267,45,15,37,053,45*7C\r\n

$GPGSV,6,2,23,16,12,268,35,18,69,078,41,23,74,336,40,24,15,111,37*79\r\n

$GPGSV,6,3,23,26,02,239,31,27,35,307,38,29,12,162,37,32,14,199,39*7B\r\n

$GPGSV,6,4,23,44,43,188,43,46,40,206,43,522,48,267,45,527,37,053,26*73\r\n

$GPGSV,6,5,23,530,69,078,34,535,74,336,34,536,15,111,25,538,02,239,18*74\r\n

$GPGSV,6,6,23,539,35,307,27,541,12,162,21,544,14,199,25*73\r\n

$GAGSV,2,1,08,05,65,144,41,09,39,052,43,34,71,341,42,36,46,105,39*6A\r\n

$GAGSV,2,2,08,517,65,144,30,521,39,052,30,546,71,341,27,548,46,105,30*64\r\n

$GBGSV,3,1,10,11,09,141,34,14,52,047,44,27,32,313,43,28,80,263,44*64\r\n

$GBGSV,3,2,10,33,81,039,43,41,43,230,42,43,33,148,42,58,,,44*5B\r\n

$GBGSV,3,3,10,11,09,141,16,14,52,047,32*60\r\n

$GQGSV,1,1,01,02,45,101,30*49\r\n

$GLGSV,2,1,07,65,85,260,33,66,28,217,30,72,36,034,35,81,20,324,33*69\r\n

$GLGSV,2,2,07,87,47,127,35,88,73,350,34,87,47,127,20*53\r\n

$GPGSV,4,1,14,02,40,310,43,08,07,324,31,10,48,267,45,15,37,053,45,1*67\r\n

$GPGSV,4,2,14,16,12,268,35,18,69,078,41,23,74,336,40,24,15,111,37,1*62\r\n

$GPGSV,4,3,14,26,02,239,31,27,35,307,38,29,12,162,37,32,14,199,39,1*60\r\n

$GPGSV,4,4,14,44,43,188,43,46,40,206,43,1*65\r\n

$GPGSV,3,1,09,10,48,267,45,15,37,053,26,18,69,078,34,23,74,336,34,6*68\r\n

$GPGSV,3,2,09,24,15,111,25,26,02,239,18,27,35,307,27,29,12,162,21,6*64\r\n

$GPGSV,3,3,09,32,14,199,25,6*58\r\n

$GAGSV,1,1,04,05,65,144,41,09,39,052,43,34,71,341,42,36,46,105,39,7*7E\r\n

$GAGSV,1,1,04,05,65,144,30,09,39,052,30,34,71,341,27,36,46,105,30,2*73\r\n

$GBGSV,2,1,08,11,09,141,34,14,52,047,44,27,32,313,43,28,80,263,44,1*71\r\n

$GBGSV,2,2,08,33,81,039,43,41,43,230,42,43,33,148,42,58,,,44,1*4E\r\n

$GBGSV,1,1,02,11,09,141,16,14,52,047,32,B*0D\r\n

$GQGSV,1,1,01,02,45,101,30,1*54\r\n

$GLGSV,2,1,06,65,85,260,33,66,28,217,30,72,36,034,35,81,20,324,33,1*75\r\n

$GLGSV,2,2,06,87,47,127,35,88,73,350,34,1*75\r\n

$GLGSV,1,1,01,87,47,127,20,3*41\r\n

7.4.5 NMEA Output Messages

- 175/330 - ©2022

Where n is 0-3, for the four satellites supported by this message.

GSV OUTPUT FILTERING

Verbosity and size of the GSV NMEA message can be reduced to only select constellation and frequencies by using a Filtered

GSV NMEA Message IDs instead of the standard GSV message ID GPGSV or 15 (NMEA_MSG_ID_GNGSV), either ASCII or integer. Note

that the GSV output filter can only hide or mask information for satellites currently enabled in the

DID_FLASH_CONFIG.gnssSatSigConst satellite system constellation. Usage:

For example, using message ID GPGSV_1 or 3857 (NMEA_MSG_ID_GPGSV_1) will output only the GPS L1 frequency and prevent all

other frequency and constellation satellite information from being displayed.

Talker ID Constellation

GP GPS

GQ QZSS

GA Galileo

GL Glonass

GB BeiDou

GN Combination of active constellations

Index Field Units Description

1 numMsgs Total number of messages for this constellation and epoch

2 msgNum Message number

3 numSats Total number of known satellites for the talker ID and signal ID

4+(n*5) prn Satellite PRN number

5+(n*5) elev deg Elevation (0-90)

6+(n*5) azim deg Azimuth (000 to 359)

7+(n*5) snr dB SNR (00-99, empty when not tracking)

variable system ID GNSS system ID (distinguishes frequency band). This field is only

output if the NMEA version is 4.11.

$ASCE,[options],[Message ID]*[checksum]\r\n

$ASCE,0,GPGSV_1,2*01\r\n

$ASCE,0,3857,2*33\r\n

7.4.5 NMEA Output Messages

- 176/330 - ©2022

Filtered GSV NMEA Message IDs

The following extended GSV NMEA message IDs are defined in data_sets.h.

All Constellations Message ID

ASCII

Message ID

Int

Description

NMEA_MSG_ID_GNGSV_0 GNGSV_0 3840 Clear all constellations and frequencies

NMEA_MSG_ID_GNGSV_1 GNGSV_1 3841 Enable all constellations band1

NMEA_MSG_ID_GNGSV_2 GNGSV_2 3842 Enable all constellations band2

NMEA_MSG_ID_GNGSV_2_1 GNGSV_2_1 3843 Enable all constellations band1, band2

NMEA_MSG_ID_GNGSV_3 GNGSV_3 3844 Enable all constellations band3

NMEA_MSG_ID_GNGSV_3_1 GNGSV_3_1 3845 Enable all constellations band1, band3

NMEA_MSG_ID_GNGSV_3_2 GNGSV_3_2 3846 Enable all constellations band2, band3

NMEA_MSG_ID_GNGSV_3_2_1 GNGSV_3_2_1 3847 Enable all constellations band1, band2,

band3

NMEA_MSG_ID_GNGSV_5 GNGSV_5 3848 Enable all constellations band5

NMEA_MSG_ID_GNGSV_5_1 GNGSV_5_1 3849 Enable all constellations band1, band5

NMEA_MSG_ID_GNGSV_5_2 GNGSV_5_2 3850 Enable all constellations band2, band5

NMEA_MSG_ID_GNGSV_5_2_1 GNGSV_5_2_1 3851 Enable all constellations band1, band2,

band5

NMEA_MSG_ID_GNGSV_5_3 GNGSV_5_3 3852 Enable all constellations band3, band5

NMEA_MSG_ID_GNGSV_5_3_1 GNGSV_5_3_1 3853 Enable all constellations band1, band3,

band5

NMEA_MSG_ID_GNGSV_5_3_2 GNGSV_5_3_2 3854 Enable all constellations band2, band3,

band5

NMEA_MSG_ID_GNGSV_5_3_2_1 GNGSV_5_3_2_1 3855 Enable all constellations band1, band2,

band3, band5

GPGSV - GPS Message ID ASCII Message ID Int Description

NMEA_MSG_ID_GPGSV_0 GPGSV_0 3856 Disable all GPS frequencies

NMEA_MSG_ID_GPGSV_1 GPGSV_1 3857 Enable GPS L1

NMEA_MSG_ID_GPGSV_2 GPGSV_2 3858 Enable GPS L2

NMEA_MSG_ID_GPGSV_2_1 GPGSV_2_1 3859 Enable GPS L1, L2

NMEA_MSG_ID_GPGSV_5 GPGSV_5 3864 Enable GPS L5

NMEA_MSG_ID_GPGSV_5_1 GPGSV_5_1 3865 Enable GPS L1, L5

NMEA_MSG_ID_GPGSV_5_2 GPGSV_5_2 3866 Enable GPS L2, L5

NMEA_MSG_ID_GPGSV_5_2_1 GPGSV_5_2_1 3867 Enable GPS L1, L2, L5

NMEA_MSG_ID_GPGSV GPGSV 3871 Enable all GPS frequencies

7.4.5 NMEA Output Messages

- 177/330 - ©2022

GAGSV - Galileo Message ID ASCII Message ID Int Description

NMEA_MSG_ID_GAGSV_0 GAGSV_0 3888 Disable all Galileo frequencies

NMEA_MSG_ID_GAGSV_1 GAGSV_1 3889 Enable Galileo E1

NMEA_MSG_ID_GAGSV_5 GAGSV_5 3896 Enable Galileo E5

NMEA_MSG_ID_GAGSV_5_1 GAGSV_5_1 3897 Enable Galileo E1, E5

NMEA_MSG_ID_GAGSV GAGSV 3903 Enable all Galileo frequencies

GBGSV - Beido Message ID ASCII Message ID Int Description

NMEA_MSG_ID_GBGSV_0 GBGSV_0 3904 Disable all Beidou frequencies

NMEA_MSG_ID_GBGSV_1 GBGSV_1 3905 Enable Beidou B1

NMEA_MSG_ID_GBGSV_2 GBGSV_2 3906 Enable Beidou B2

NMEA_MSG_ID_GBGSV_2_1 GBGSV_2_1 3907 Enable Beidou B1, B2

NMEA_MSG_ID_GBGSV_3 GBGSV_3 3908 Enable Beidou B3

NMEA_MSG_ID_GBGSV_3_1 GBGSV_3_1 3909 Enable Beidou B1, B3

NMEA_MSG_ID_GBGSV_3_2 GBGSV_3_2 3910 Enable Beidou B2, B3

NMEA_MSG_ID_GBGSV_3_2_1 GBGSV_3_2_1 3911 Enable Beidou B1, B2, B3

NMEA_MSG_ID_GBGSV GBGSV 3919 Enable all Beidou frequencies

GQGSV - QZSS Message ID ASCII Message ID Int Description

NMEA_MSG_ID_GQGSV_0 GQGSV_0 3920 Disable all QZSS frequencies

NMEA_MSG_ID_GQGSV_1 GQGSV_1 3921 Enable QZSS L1

NMEA_MSG_ID_GQGSV_2 GQGSV_2 3922 Enable QZSS L2

NMEA_MSG_ID_GQGSV_2_1 GQGSV_2_1 3923 Enable QZSS L1, L2

NMEA_MSG_ID_GQGSV_5 GQGSV_5 3928 Enable QZSS L5

NMEA_MSG_ID_GQGSV_5_1 GQGSV_5_1 3929 Enable QZSS L1, L5

NMEA_MSG_ID_GQGSV_5_2 GQGSV_5_2 3930 Enable QZSS L2, L5

NMEA_MSG_ID_GQGSV_5_2_1 GQGSV_5_2_1 3931 Enable QZSS L1, L2, L5

NMEA_MSG_ID_GQGSV GQGSV 3935 Enable all QZSS frequencies

7.4.5 NMEA Output Messages

- 178/330 - ©2022

VTG

NMEA GPS track made good and speed over ground.

| Index | Field | Units | Description | Example | |-------|--------|-------|--|---------| | 1 | track true | deg |

Ground track heading (true north) | 140.88 | | 2 | T | | Ground track heading is relative to true north | T | | 3 | track mag | deg |

Ground track heading (magnetic north) | | | 4 | M | | Ground track heading is relative to magnetic north (track mag = track true +

magVarCorrection) | M | | 5 | speed Kn | knots | Speed | 8.04 | | 6 | N | | Speed is measured in knots | N | | 7 | speed Km | kph |

Speed over ground in kilometers/hour | 14.89 | | 8 | K | | Speed over ground is measured in kph | K | | 9 | mode ind | | Mode

indicator: | D | | | | | A: Autonomous mode | | | | | | D: Differential mode | | | | | | E: Estimated (dead reckoning) mode | | | | | | M:

Manual Input mode | | | | | | S: Simulator mode | | | | | | N: Data not valid | |

PASHR

NMEA GPS DOP and active satellites.

GLGSV - Glonass Message ID ASCII Message ID Int Description

NMEA_MSG_ID_GLGSV_0 GLGSV_0 3936 Disable all Glonass frequencies

NMEA_MSG_ID_GLGSV_1 GLGSV_1 3937 Enable Glonass L1

NMEA_MSG_ID_GLGSV_2 GLGSV_2 3938 Enable Glonass L2

NMEA_MSG_ID_GLGSV_2_1 GLGSV_2_1 3939 Enable Glonass L1, L2

NMEA_MSG_ID_GLGSV_3 GLGSV_3 3940 Enable Glonass L3

NMEA_MSG_ID_GLGSV_3_1 GLGSV_3_1 3941 Enable Glonass L1, L3

NMEA_MSG_ID_GLGSV_3_2 GLGSV_3_2 3942 Enable Glonass L2, L3

NMEA_MSG_ID_GLGSV_3_2_1 GLGSV_3_2_1 3943 Enable Glonass L1, L2, L3

NMEA_MSG_ID_GLGSV GLGSV 3951 Enable all Glonass frequencies

$GPVTG,140.88,T,,M,8.04,N,14.89,K,D*05\r\n

 1 2 3 4 5 6 7 8 9

7.4.5 NMEA Output Messages

- 179/330 - ©2022

PSTRB

Strobe input time. This message is sent when an assert event occurs on a strobe input pin.

INFO

Device version information. Query this message by sending $INFO*0E\r\n .

$PASHR,001924.600,95.81,T,+0.60,+1.05,+0.00,0.038,0.035,0.526,0,0*08\r\n

 1 2 3 4 5 6 7 8 9 10 11

Index Field Units Description Example

1 Time UTC Time 001924.600

2 Heading Heading value in decimal degrees 95.81

3 True Heading T displayed if heading is relative to true

north.

T

4 Roll m Roll in decimal degrees. +0.60

5 Pitch m Pitch in decimal degrees. +1.05

6 Heave m Instantaneous heave in meters. +0.00

7 Roll Accuracy Roll standard deviation in decimal

degrees.

+0.038

8 Pitch Accuracy Pitch standard deviation in decimal

degrees.

0.035

9 Heading

Accuracy

Heading standard deviation in decimal

degrees.

0.526

10 GPS Status GPS Status 0

11 INS Status INS Status 0

$PSTRB,d,d,d,d*xx\r\n

 1 2 3 4

Index Field Units Description

1 GPS week weeks Number of weeks since January 1
st

 of 1980 in GMT

2 timeMsOfWeek ms Milliseconds since Sunday morning in GMT

3 pin Strobe event input pin number

4 count Strobe event serial index number

7.4.5 NMEA Output Messages

- 180/330 - ©2022

7.4.6 NMEA Examples

If the command strings below are altered, their checksum must be recalculated.

All NMEA command strings must be followed with a carriage return and new line character (\r\n or 0x0D , 0x0A).

The NMEA string checksum is automatically computed and appended to string when using the InertialSense SDK

serialPortWriteAscii function or can be generated using an online NMEA checksum calculator. For example: MTK NMEA

checksum calculator

Stop streams on CURRENT port

Stop all streams on ALL ports

Query device version information

$INFO,d,d.d.d.d,d.d.d.d,d,d.d.d.d,d,s,YYYY-MM-DD,hh:mm:ss.ms,s*xx\r\n

 1 2 3 4 5 6 7 8 9 10

Index Field Units Description

1 Serial number Manufacturer serial number

2 Hardware

version

Hardware version

3 Firmware

version

Firmware version

4 Build number Firmware build number

5 Protocol version Communications protocol version

6 Repo revision Repository revision number

7 Manufacturer Manufacturer name

8 Build date Build date:

[1] = year, [2] = month, [3] = day

9 Build time Build date: [0] = hour, [1] = minute,

[2] = second, [3] = millisecond

10 Add Info Additional information

11 Hardware Hardware: 1=uINS, 2=EVB, 3=IMX, 4=GPX

12 Reserved Reserved for internal purpose.

13 Build type Build type: 'a'=ALPHA, 'b'=BETA, 'c'=RELEASE CANDIDATE,

'r'=PRODUCTION RELEASE, 'd'=debug

Note

Note

$STPB*15

$STPC*14

$INFO*0E

7.4.6 NMEA Examples

- 181/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/blob/main/src/serialPort.c#L219-L268
http://www.hhhh.org/wiml/proj/nmeaxor.html
http://www.hhhh.org/wiml/proj/nmeaxor.html

Response:

Stream INS1 @5Hz on port 0

Stream INS1 @400ms on current port

Response:

Stream INS1 @600ms on serial port 1

Response:

Stream PIMU @400ms and GGA @5Hz on current port

Response:

$INFO,30612,3.1.2.0,1.7.0.0,3522,1.2.74.7,6275,Inertial Sense Inc,0018-10-16,23:20:38.41,INL2*58

$ASCE,1,3,1*0B

$ASCE,0,3,2*09

$PINS1,244272.398,2021,427888998,805306448,0.0468,-0.3830,-0.0909,0.232,-0.083,-0.089,40.05574940,-111.65861580,1438.451,-1.678,-5.086,-9.697*11

$PINS1,244272.498,2021,427888998,805306448,0.0469,-0.3830,-0.0902,0.232,-0.081,-0.089,40.05575000,-111.65861550,1438.451,-1.611,-5.060,-9.697*18

$PINS1,244272.598,2021,427888998,805306448,0.0469,-0.3830,-0.0902,0.232,-0.081,-0.089,40.05575022,-111.65861562,1438.449,-1.587,-5.070,-9.695*1e

$ASCE,2,3,3*0A

$PINS1,256270.627,2021,427888998,1073741912,0.1153,-0.1473,-0.1628,0.001,0.001,0.003,40.05569486,-111.65864500,1416.218,-7.738,-7.570,12.536*3d

$PINS1,256270.647,2021,427888998,1073741912,0.1153,-0.1473,-0.1632,0.001,0.001,0.003,40.05569486,-111.65864500,1416.219,-7.738,-7.570,12.535*32

$PINS1,256270.667,2021,427888998,1073741912,0.1153,-0.1473,-0.1631,0.001,0.001,0.003,40.05569486,-111.65864500,1416.220,-7.738,-7.570,12.534*38

$ASCE,0,6,1,0,2*0D

$PIMU,3218.543,0.0017,-0.0059,-0.0077,-1.417,-1.106,-9.524,0.0047,0.0031,-0.0069,-1.433,-1.072,-9.585*1f

$GPGGA,231841,4003.3425,N,11139.5188,W,1,29,0.89,1434.16,M,18.82,M,,*59

$GPGGA,231841,4003.3425,N,11139.5188,W,1,29,0.89,1434.19,M,18.82,M,,*56

$PIMU,3218.763,0.0019,-0.0062,-0.0086,-1.426,-1.114,-9.509,0.0054,0.0029,-0.0070,-1.431,-1.085,-9.579*13

$GPGGA,231841,4003.3425,N,11139.5188,W,1,29,0.89,1434.16,M,18.82,M,,*59

$GPGGA,231841,4003.3425,N,11139.5188,W,1,29,0.89,1434.19,M,18.82,M,,*56

$PIMU,3218.543,0.0017,-0.0059,-0.0077,-1.417,-1.106,-9.524,0.0047,0.0031,-0.0069,-1.433,-1.072,-9.585*1f

7.4.6 NMEA Examples

- 182/330 - ©2022

7.5 SPI Protocol

The SPI interface provides an alternative method of communications with the IMX-5. The SPI protocol uses much of the same

structure and format as the serial communication binary protocol which is outlined in the Binary Protocol section of the users

manual.

7.5.1 Enable SPI

To Enable SPI, hold pin G9 (nSPI_EN) low at startup.

Note: When external GPS PPS timepulse signal is enabled on G9, the module will ignore the nSPI_EN signal and SPI mode will be

disabled regardless of G9 pin state.

7.5.2 Hardware

Inertial Sense SPI interface uses 5 lines to interface with other devices.

Hardware Configuration

The IMX and GPX modules operate as a SPI slave device using SPI Mode 3:

Data Transfer

To ensure correct behavior of the receiver in SPI Slave mode, the master device sending the frame must ensure a minimum delay

of one t
bit

 (t
bit

 being the nominal time required to transmit a bit) between each character transmission. Inertial Sense devices do

not require a falling edge of the [Chip Select (CS)] to initiate a character reception but only a low level. However, this low level

must be present on the [Chip Select (CS)] at least one t
bit

 before the first serial clock cycle corresponding to the MSB bit. (1)

Line Function

CS SPI Chip Select

SCLK SPI Clock Synchronization Pin

MISO SPI Master In Slave Out

MOSI SPI Master Out Slave In

DR SPI Data Ready Pin (optional)

SPI Settings

SPI Mode 3

CPOL (Clock Polarity) 1

CPHA (Clock Phase) 1

Clock Polarity in Idle State Logic high

Clock Phase Used to Sample and/or Shift Data Data sampled on the rising edge and shifted out on the falling edge.

Chip Select Active low

Data Ready Active high

7.5 SPI Protocol

- 183/330 - ©2022

When reading the IMX and there is no data ready it will send zeros for the data.

Keeping CS low should not cause any issues. However, if the clocking between the master and slave processors gets out of sync

there is nothing to get them back into sync. Ground bounce or noise during a transition could cause the IMX to see two clock

edges when there should have only been one (due to an ESD or a fast transient event). Raising and lowering the CS line resets

the shift register will resynchronize the clocks.

Data Ready Pin Option

There is a data ready pin option. This signal will be raised when data becomes ready. Depending on when this happens there can

be 1-4 bytes of zeros that will come out before the packet starts. Also this line will go inactive a byte or two before the end of the

packet gets sent. There is not a "not in a data packet" character to send. It is strictly done by data ready pin and parsing.

If the chip select line is lowered during a data packet, the byte being transmitted (or that would be transmitted) can be lost. It is

recommended to only lower the chip select when outside of a data packet and the data ready pin is inactive.

The internal SPI buffer is 4096 bytes. If there is a buffer overflow, the buffer gets dropped. This is indicated by a data ready pin

that is high without data being there. When an overflow happens, it clears the buffer, so the system could be in the middle of a

packet and the IMX would just send zeros. If a request is sent to the IMX or the IMX sends a packet periodically it will resolve

the situation.

The SPI interface supports up to 3 Mbs data rate. (5 Mbs works if the data ready pin is used to receive the data - see B below.)

Reading Data

There are two strategies that can be used to read the data:

A. Read a fixed data size out every set time interval. More data will be read than the uINx will produce on a regular interval, for

instance, reading 512 bytes every 4 ms.

Packet will be 0x00 padded if bytes read exceeds packet size.

B. Read while the data ready pin is active or we are inside a data packet. One anomaly is the data ready pin will drop a byte or

two before the end gets clocked out, hence needing to watch for the end of the packet.

7.5.2 Hardware

- 184/330 - ©2022

Pseudo Code for reading data:

Check data ready pin. If pin is low, delay and check pin again.

Lower CS line and read a block of data. Read sizes are arbitrary, but it tends to work better if the read count is long enough to

contain most data packets.

After read completes, check data ready pin. If it is high, read more data. DO NOT raise the CS line while the data ready pin is high,

it will cause data loss. If data ready is low, raise CS line. On a busy system (and depending on baud rate) this would need to happen

along with the data read as the data ready pin might not go low in between packets.

Parse data looking for start of packet (0xFF) discarding data until found. Once found start saving the data.

Save and parse data looking for end of packet (0xFE). Once found send packet off for use. If a start of packet character is seen

while looking for the end, discard previous data and start the packet saving over.

7.5.3 EVB-2 SPI Dev Kit

The EVB-2 demonstrates SPI interface with the IMX. The EVB-2 ATSAM-E70 (E70) processor provides the example SPI interface

with the IMX. The EVB-2 must be put into CBPreset mode 6 (CONFIG led color cyan) followed by a system reset to enable SPI

mode. The EVB-2 (E70) project source code is available in the SDK for reference.

7.5.4 Troubleshooting

If every other character from a packet is lost it might be that the CS line is being toggled after every byte.

The uINS-3.1 uses a USART SPI peripherial which requires a minimum delay of one t
bit

 (t
bit

 being the nominal time required to

transmit a bit) spacing between characters sent. Reading bytes one by one may cause signifacnt time delays when streaming

data. Depending on the ammount of data streaming, the uINS mable to keep up and the buffer could be overflow. Single message

requests should work properly, but streaming probably will not work well. If the master hardware can't handle the delay, the

uINS 3.2 hardware should be used.

7.5.5 Resources

(1) SAM E70/S70/V70/V71 Family. Microchip Technology Inc., https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-

S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf

1.

2.

3.

4.

5.

7.5.3 EVB-2 SPI Dev Kit

- 185/330 - ©2022

https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf

7.6 CAN Protocol

The CAN interface allows the output of the the µINS, µAHRS, and µIMU to be published on a CAN bus. The Inertial Sense CAN

implementation is based on CAN2.0b specification and follows a specific structure and format which is outlined below. All of the

CAN configuration is done using the data set DID_CAN_CONFIG.

7.6.1 Enable CAN

To enable the CAN bus interface on the IMX, set bit IO_CONFIG_G1G2_CAN_BUS in DID_FLASH_CONFIG.ioConfig . This bit can be set

using the EvalTool >> Settings >> General >> DID_FLASH_CONFIG >> ioConfig >> Enable CAN Bus on G1,G2 option.

A CAN message is enabled by entering a non-zero value in the DID_CAN_CONFIG.can_period_mult field of the desired message.

The can_period_mult field is an integer which is multiplied by the Data Source Update Rate to determine the message broadcast

period. Set can_period_mult to zero disable message broadcasting.

In the image below the CID_INS_TIME message is set to broadcast data at 10 times the data source rate.

7.6 CAN Protocol

- 186/330 - ©2022

The baud rate is configurable by setting the field DID_CAN_CONFIG.can_baudrate_kbps. The following standard baud rates are

supported:

20 kbps

33 kbps

50 kbps

83 kbps

100 kbps

125 kbps

200 kbps

250 kbps

500 kbps

1000 kbps

The message ID for each message can be entered into the can_transmit_address field corresponding to the desired message.

*Note: Any message ID greater than 0x7FF will be transmitted in the extended ID format.

The values set in any field of DID_CAN_CONFIG are saved to flash when a 'Save Persistent' command is received by the module.

For example, this can be done in the EvalTool by clicking the Save Persistent button in the Data Logs tab. When the module is

turned on, all the fields will be repopulated with the saved values.

All messages are disabled when a Stop Streaming message is received by the module. However, the values in each field will be

repopulated to the values present when a 'Save Persistent' command was last received.

7.6.2 Hardware

Inertial Sense module exposes the RxCAN and TxCAN pins. The selection and implementation of a CAN transceiver is left to the

user.

The Inertial Sense evaluation boards and Rugged unit have a built in transceiver.

7.6.3 CAN Data Sets (CIDs)

The CAN Data Sets, in the form of C structures, define the format of the output data. The data sets are defined in

SDK\src\data_sets_canbus.h of the InertialSense SDK. The CID data is selected data from the standard Inertial Sense DIDs. The

data types generally have been changed and scaled to fit the CAN2.0 8 byte payload restrictions.

CID_INS_TIME

INS time output

is_can_time

GMT information

•

•

•

•

•

•

•

•

•

•

Line Function

G1 RxCAN

G2 TxCAN

Field Type Description

week uint32_t GPS number of weeks since January 6
th

, 1980

timeOfWeek float GPS time of week (since Sunday morning) in seconds

7.6.2 Hardware

- 187/330 - ©2022

CID_INS_STATUS

is_can_ins_status

INS status flags

CID_INS_EULER

is_can_ins_euler

Euler angles: roll, pitch, yaw in radians with respect to NED (scaled by 10000)

CID_INS_QUATN2B

is_can_ins_quatn2b

Quaternion body rotation with respect to NED: W, X, Y, Z (scaled by 10000)

CID_INS_QUATE2B

is_can_ins_quate2b

Quaternion body rotation with respect to ECEF: W, X, Y, Z (scaled by 10000)

CID_INS_UVW

is_can_uvw

Field Type Description

insStatus uint32_t INS status flags (see eInsStatusFlags)

hdwStatus uint32_t Hardware status flags (see eHdwStatusFlags)

Field Type Description

theta1 int16_t Roll (4 decimal places precision)

theta2 int16_t Pitch (4 decimal places precision)

theta3 int16_t Yaw (4 decimal places precision)

Field Type Description

qn2b1 int16_t W (4 decimal places precision)

qn2b2 int16_t X (4 decimal places precision)

qn2b3 int16_t Y (4 decimal places precision)

qn2b4 int16_t Z (4 decimal places precision)

Field Type Description

qe2b1 int16_t W (4 decimal places precision)

qe2b2 int16_t X (4 decimal places precision)

qe2b3 int16_t Y (4 decimal places precision)

qe2b4 int16_t Z (4 decimal places precision)

7.6.3 CAN Data Sets (CIDs)

- 188/330 - ©2022

Velocity U, V, W in body frame in meters per second (scaled by 100).

CID_INS_VE

is_can_ve

Velocity in ECEF (earth-centered earth-fixed) frame in meters per second (scaled by 100).

CID_INS_LAT

is_can_ins_lat

WGS84 latitude.

CID_INS_LON

is_can_ins_lon

WGS84 longitude.

CID_INS_ALT

is_can_ins_alt

WGS84 height above ellipsoid and GPS status flags

CID_INS_NORTH_EAST

is_can_north_east

Field Type Description

uvw1 int16_t U (2 decimal places precision)

uvw2 int16_t V (2 decimal places precision)

uvw3 int16_t W (2 decimal places precision)

Field Type Description

ve1 int16_t ve1 (2 decimal places precision)

ve2 int16_t ve2 (2 decimal places precision)

ve3 int16_t ve3 (2 decimal places precision)

Field Type Description

lat double Latitude (degrees) (more than 8 decimal places precision)

Field Type Description

lon double Longitude (degrees) (more than 8 decimal places precision)

Field Type Description

alt float Altitude (meters) (more than 8 decimal places precision)

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags

7.6.3 CAN Data Sets (CIDs)

- 189/330 - ©2022

Offset from reference latitude, longitude, and altitude to current latitude, longitude, and altitude.

CID_INS_DOWN

is_can_down

Down offset from reference LLA and INS status flags

CID_INS_ECEF_X

is_can_ecef_x

X Position in ECEF (earth-centered earth-fixed) frame.

CID_INS_ECEF_Y

is_can_ecef_y

Y Position in ECEF (earth-centered earth-fixed) frame.

CID_INS_ECEF_Z

is_can_ecef_z

Z Position in ECEF (earth-centered earth-fixed) frame.

CID_INS_MSL

ins_can_msl

Height above Mean Sea Level

CID_PREINT_PX

is_can_preint_imu_px

Type Field Description

float ned1 North (meters)

float ned2 East (meters)

Type Field Description

float ned3 Down (meters)

float insStatus INS status flags

Type Field Description

ecef1 double X (meters)

Type Field Description

ecef2 double Y (meters)

Type Field Description

ecef2 double Z (meters)

Type Field Description

msl float MSL (meters)

7.6.3 CAN Data Sets (CIDs)

- 190/330 - ©2022

Preintegrated IMU values delta theta and delta velocity (X axis), and Integral period in body/IMU frame of accelerometer 0.

CID_PREINT_QY

is_can_preint_imu_qy

Preintegrated IMU values delta theta and delta velocity (Y axis), and Integral period in body/IMU frame of accelerometer 0.

CID_PREINT_RZ

is_can_preint_imu_rz

Preintegrated IMU values delta theta and delta velocity (Z axis), and Integral period in body/IMU frame of accelerometer 0.

CID_DUAL_PX

is_can_dual_imu_px

Dual IMU gyro and accelerometer values from accelerometer 0

CID_DUAL_QY

is_can_dual_imu_qy

Dual IMU gyro and accelerometer values from accelerometer 0

Type Field Description

theta0 int16_t Delta theta (rad, scaled by 1000, 3 decimal places precision)

vel0 int16_t Delta velocity (m/s, scaled by 100, 2 decimal places precision)

dt uints16_t Integral Period (meters, scaled by 1000)

Type Field Description

theta1 int16_t Delta theta (rad, scaled by 1000, 3 decimal places precision)

vel1 int16_t Delta velocity (m/s, scaled by 100, 2 decimal places precision)

dt uints16_t Integral Period (meters, scaled by 1000)

Type Field Description

theta2 int16_t Delta theta (rad, scaled by 1000, 3 decimal places precision)

vel2 int16_t Delta velocity (m/s, scaled by 100, 2 decimal places precision)

dt uints16_t Integral Period (meters, scaled by 1000)

Type Field Description

theta0 int16_t Theta (rad/s, scaled by 1000, 3 decimal places precision)

vel0 int16_t Acceleration (m/s
2
, scaled by 100, 2 decimal places precision)

status uints32_t IMU status (see eImuStatus)

Type Field Description

theta1 int16_t Theta (rad/s, scaled by 1000, 3 decimal places precision)

vel1 int16_t Acceleration (m/s
2
, scaled by 100, 2 decimal places precision)

status uints32_t IMU status (see eImuStatus)

7.6.3 CAN Data Sets (CIDs)

- 191/330 - ©2022

CID_DUAL_RZ

is_can_dual_imu_rz

Dual IMU gyro and accelerometer values from accelerometer 0

CID_GPS1_POS

is_can_gps_pos_status

GPS CNO Mean and GPS status flags

CID_GPS1_RTK_POS_REL

is_can_gps_rtk_rel

RTK-GPS positioning performance metrics

CID_GPS2_RTK_CMP_REL

is_can_gps_rtk_rel

RTK-GPS compassing performance metrics

CID_ROLL_ROLLRATE

is_can_roll_rollRate

Type Field Description

theta2 int16_t Theta (rad/s, scaled by 1000, 3 decimal places precision)

vel2 int16_t Acceleration (m/s
2
, scaled by 100, 2 decimal places precision)

status uints32_t IMU status (see eImuStatus)

Type Field Description

status uint32_t (see eGpsStatus) GPS status: [0x000000xx] number of satellites used, [0x0000xx00] fix

type, [0x00xx0000] status flags

cnoMean uint32_t (dBHz) Average of all satellite carrier to noise ratios (signal strengths) that are non-

zero

Type Field Description

arRatio uint8_t Ambiguity resolution ratio factor for validation

differentialAge uint8_t Age of differential (seconds)

distanceToBase float Distance to Base (m)

headingToBase int16_t Angle from north to vectorToBase in local tangent plane. (rad, scaled by 1000)

Type Field Description

arRatio uint8_t Ambiguity resolution ratio factor for validation

differentialAge uint8_t Age of differential (seconds)

distanceToBase float Distance to Base (m)

headingToBase int16_t Angle from north to vectorToBase in local tangent plane. (rad, scaled by 1000)

7.6.3 CAN Data Sets (CIDs)

- 192/330 - ©2022

Combination or INS roll estimation and preintegrated IMU of both accelerometers

Type Field Description

insRoll int16_t INS Roll (scaled by 10000, 4 decimal places precision)

pImu1 int16_t Delta theta (rad, scaled by 1000, 3 decimal places precision)

pImu2 int16_t Delta theta (rad, scaled by 1000, 3 decimal places precision)

7.6.3 CAN Data Sets (CIDs)

- 193/330 - ©2022

8. GNSS - RTK

8.1 Multi-band GNSS

8.1.1 Multi-band GNSS

Advantages

The advent of multi-band GNSS (multiple frequency global navigation satellite systems) improves accuracy by reducing the

impact of errors caused by multi-path and atmospheric distortion. When compared to traditional single-band GNSS, dual-band

technology provides about a 2x reduction in average position error (circular error probable - CEP). Benefits of multi-band GNSS

systems like the uBlox ZED-F9P or the Inertial Sense GPS-1 receiver include:

Concurrent reception of GPS, GLONASS, Galileo and BeiDou for better coverage.

Faster convergence time (GPS time to fix).

More reliable / robust performance.

~2x reduction in average position error (CEP).

Centimeter-level RTK position accuracy.

Small and energy efficient module.

Easy integration of RTK for fast time-to-market.

Overview

The IMX (GPS-INS) can be interfaced with external multi-band (multi-frequency) GNSS receiver(s) connected via serial port(s) to

improve precision the EKF solution. The supported message protocols are uBlox binary and NMEA. The following are the GPS

settings (accessible in the EvalTool GPS Settings tab and IMX DID_FLASH_CONFIG.ioConfig and DID_FLASH_CONFIG.RTKCfgBits):

Refer to the Hardware section of this manual for serial port pinout information.

Dual GNSS Heading Accuracy

When using two multi-band GNSS receivers in moving baseline mode (RTK compassing) such as the RUG-3-IMX-5-DUAL, the

baseline error is composed of the measurement error plus the RTK solution error. The heading accuracy with ideal conditions is

shown in the following plot.

•

•

•

•

•

•

•

Setting Value

GPS Source Serial port of the GNSS (serial 0 or 1)

GPS Type GNSS model or protocol (ublox M8, ublox F9, Inertial Sense, or NMEA)

GPS RTK Position for GPX-1 L1/L5 RTK precision positioning

Compass for GPX-1 L1/L5 RTK Dual GNSS heading

F9 Position for ZED-F9P mult-frequency RTK precision positioning

F9 Compass for ZED-F9P multi-frequency Dual GNSS heading

GPS1 Timepulse Source of the GNSS PPS time synchronization, uBlox GPS type only.

8. GNSS - RTK

- 194/330 - ©2022

https://inertialsense.com/product/dual-compassing-ins-sensor-series-5-ruggedized-module/

Single GNSS RTK Positioning w/ LiDAR

RTK base messages (RTMC3) supplied to any of the IMX serial ports are forwarded to the GPX-1 for RTK positioning. The RTK

precision position is used in the IMX EKF solution. The IMX can be configured to output NMEA messages such as GPGGA or

GPRMC on any serial port.

8.1.1 Multi-band GNSS

- 195/330 - ©2022

Dual GNSS RTK Positioning and RTK Compassing

RTK base messages (RTMC3) supplied to any of the IMX serial ports are forwarded to GPS1 for RTK positioning. RTK moving

base messages from GPS1 are forwarded to GPS2 for RTK compassing. The RTK precision position from GPS 1 and the RTK

compassing heading from GPS2 are used in the IMX EKF solution.

8.1.1 Multi-band GNSS

- 196/330 - ©2022

8.1.2 IS GPX-1

The IMX can be configured for use with the Inertial Sense GPX-1 multi-band GNSS receivers. This can be done using either the

EvalTool GPS Setting tab or the IMX DID_FLASH_CONFIG.ioConfig and DID_FLASH_CONFIG.RTKCfgBits fields.

The following sections detail how to interface and configure the IMX for operation using the GPX-1. See RTK precision

positioning and RTK compassing for RTK operation principles.

TYPICAL INTERFACE

The IMX will automatically configure the GPX-1 for communications.

RUGGED-4 (COMING SOON)

The Rugged-4 INS contains the GPX-1 onboard supporting RTK positioning and compassing. GPS 1 and GPS 2 are connected to

serial port 0 on the IMX-5.

GPS Ports Value

GPS Source serial 0, serial 1, or serial 2

GPS Type GPX-1

GPS1 Timepulse Disable or IMX pin connected to GPX-1

RTK Rover Value

GPS RTK Mode Position or Compass

RTK Base Value

Serial Port 0 (Single GNSS only) GPS1 - RTCM3

USB Port GPS1 - RTCM3

8.1.2 IS GPX-1

- 197/330 - ©2022

The following is a list of the ZED-F9P GNSS receivers and compatible antenna(s).

8.1.2 IS GPX-1

- 198/330 - ©2022

Item Supplier# Description

SparkFun:

ANN-

MB1-00

ublox:

ANN-

MB1-00

ublox

Multi‑frequency

GNSS antenna

(L1, L2/E5b/

B2I) active

magnet mount.

Supports GPS,

GLONASS,

Galileo, and

BeiDou. 5m

SMA cable.

Designed for

ZED-F9P.

Mouser:

ANN-

MB1-00

Taoglas:

ANN-

MB1-00

ublox

Multi‑frequency

GNSS antenna

(L1, L2/E5b/

B2I) active

magnet mount.

Supports GPS,

GLONASS,

Galileo, and

BeiDou. 5m

SMA cable.

Designed for

ZED-F9P.

8.1.2 IS GPX-1

- 199/330 - ©2022

https://www.sparkfun.com/gnss-l1-l5-multi-band-high-precision-antenna-5m-sma.html
https://www.sparkfun.com/gnss-l1-l5-multi-band-high-precision-antenna-5m-sma.html
https://www.u-blox.com/en/product/ann-mb1-antenna
https://www.u-blox.com/en/product/ann-mb1-antenna
https://mou.sr/3QEZYgF
https://mou.sr/3QEZYgF
https://www.taoglas.com/product/adfgp-50a-active-gnss-dual-stacked-patch/
https://www.taoglas.com/product/adfgp-50a-active-gnss-dual-stacked-patch/

Item Supplier# Description

8.1.2 IS GPX-1

- 200/330 - ©2022

8.1.3 ublox F9P

The IMX can be configured for use with uBlox ZED-F9P multi-band GNSS receivers. This can be done using either the EvalTool

GPS Setting tab or the IMX DID_FLASH_CONFIG.ioConfig and DID_FLASH_CONFIG.RTKCfgBits fields.

The following sections detail how to interface and configure the IMX for operation using the ZED-F9P. See RTK precision

positioning and RTK compassing for RTK operation principles.

RUGGED-3

The Rugged-3 INS contains the either single or dual ZED-F9P onboard supporting RTK positioning and compassing. GPS 1 and

GPS 2 are connected to serial ports 1 and 0 respectively on the IMX.

Single GNSS Settings

Use the following IMX settings with the Rugged-3-G1 (single GNSS receiver). These settings can be applied either using the

EvalTool GPS Settings tab or the IMX DID_FLASH_CONFIG.ioConfig and DID_FLASH_CONFIG.RTKCfgBits fields.

GPS Ports

Set the GPS1 source to Serial 1 and type to ublox F9P.

GPS Ports Value

GPS Source serial 0, serial 1, or serial 2

GPS Type ublox F9P

GPS1 Timepulse Disable or IMX pin connected to ZED-F9P PPS

RTK Rover Value

GPS RTK Mode F9P Position or F9P Compass

RTK Base Value

Serial Port 0 (Single GNSS only) GPS1 - RTCM3

USB Port GPS1 - RTCM3

8.1.3 ublox F9P

- 201/330 - ©2022

RTK Rover

Enable RTK rover mode by selecting F9P Precision Position.

RTK Base

To configuring a system as an RTK base, disable the RTK Rover by setting the GPS1 and GPS2 RTK Mode to OFF, and select the

appropriate correction output port on the IMX.

Dual GNSS Settings

Use the following IMX settings with the Rugged-3-G2 (dual GNSS receivers). These settings can be applied either using the

EvalTool GPS Settings tab or the IMX DID_FLASH_CONFIG.ioConfig and DID_FLASH_CONFIG.RTKCfgBits fields.

GPS Ports

Set GPS 1 and 2 to source Serial 1 and Serial 0. the serial port that the ZED-F9P is connected to and type to ublox F9P.

DID_FLASH_CONFIG Value

ioConfig (firmware >=1.8.5) 0x0244a040

DID_FLASH_CONFIG Value

RTKCfgBits 0x00000002

DID_FLASH_CONFIG Value

RTKCfgBits 0x00000900

8.1.3 ublox F9P

- 202/330 - ©2022

RTK Rover

Enable RTK rover mode by selecting Precision Position External. GPS1 is designated for Precision Position External and

GPS2 for F9P Compass settings. Either or both can be enabled at the same time.

RTK Base

To configuring a system as an RTK base, skip the RTK rover settings, and select the appropriate correction output port on the

IMX. Notice that IMX serial port 0 and 1 may be unavailable and occupied by the dual ZED-F9P receivers.

DID_FLASH_CONFIG Value

ioConfig (firmware >=1.8.5) 0x025ca040

DID_FLASH_CONFIG Value

RTKCfgBits 0x00000006

DID_FLASH_CONFIG Value

RTKCfgBits 0x00000900

8.1.3 ublox F9P

- 203/330 - ©2022

RUGGED-3-IMX-5 TO ZED-F9P

A +3.3V or +5V supply is needed to power the ZED-F9P when using the Rugged-1 IMX. A USB +5V supply can be used if

available. The Rugged-1 must be configured for Serial Port 1 TTL voltage. See hardware configuration for Rugged v1.0 or

Rugged v1.1 for details.

Settings

See the single GNSS settings.

RTK Base Messages

In RTK mode, the ZED-F9P requires RTCM version 3 messages supporting DGNSS according to RTCM 10403.3.

8.1.3 ublox F9P

- 204/330 - ©2022

ZED-F9 ROVER MESSAGES

The ZED-F9P operating in RTK rover mode can decode the following RTCM 3.3 messages.

Message type Description

RTCM 1001 L1-only GPS RTK observables

RTCM 1002 Extended L1-only GPS RTK observables

RTCM 1003 L1/L2 GPS RTK observables

RTCM 1004 Extended L1/L2 GPS RTK observables

RTCM 1005 Stationary RTK reference station ARP

RTCM 1006 Stationary RTK reference station ARP with antenna height

RTCM 1007 Antenna descriptor

RTCM 1009 L1-only GLONASS RTK observables

RTCM 1010 Extended L1-only GLONASS RTK observables

RTCM 1011 L1/L2 GLONASS RTK observables

RTCM 1012 Extended L1/L2 GLONASS RTK observables

RTCM 1033 Receiver and antenna description

RTCM 1074 GPS MSM4

RTCM 1075 GPS MSM5

RTCM 1077 GPS MSM7

RTCM 1084 GLONASS MSM4

RTCM 1085 GLONASS MSM5

RTCM 1087 GLONASS MSM7

RTCM 1094 Galileo MSM4

RTCM 1095 Galileo MSM5

RTCM 1097 Galileo MSM7

RTCM 1124 BeiDou MSM4

RTCM 1125 BeiDou MSM5

RTCM 1127 BeiDou MSM7

RTCM 1230 GLONASS code-phase biases

RTCM 4072.0 Reference station PVT (u-blox proprietary RTCM Message)

8.1.3 ublox F9P

- 205/330 - ©2022

ZED-F9 BASE OUTPUT MESSAGES

The ZED-F9P operating in RTK base mode will generate the following RTCM 3.3 output messages depending on whether the

satellite constellation have been enabled. See the Constellation Selection for information on enabling and disabling satellite

constellations.

NTRIP MESSAGES

The NTRIP server must provide the necessary subset of RTCM3 messages supported by the IMX-RTK. See the NTRIP page for an

overview of NTRIP.

ZED-F9P Firmware Update

The following section describes how to view the current GPS firmware version and how to update the firmware on the uBlox

ZED-F9P GNSS receiver through the IMX.

GPS FIRMWARE VERSION

The current GPS firmware version can be read through the DID_GPS1_VERSION and DID_GPS2_VERSION messages.

Message Type Period (sec) Description

RTCM 1005 2 Stationary RTK reference station ARP

RTCM 1074 0.4 GPS MSM4

RTCM 1077 0.4 GPS MSM7

RTCM 1084 0.4 GLONASS MSM4

RTCM 1087 0.4 GLONASS MSM7

RTCM 1094 0.4 Galileo MSM4

RTCM 1097 0.4 Galileo MSM7

RTCM 1124 0.4 BeiDou MSM4

RTCM 1127 0.4 BeiDou MSM7

RTCM 1230 2 GLONASS code-phase biases

8.1.3 ublox F9P

- 206/330 - ©2022

FIRMWARE UPDATE

The following steps describe how to update the uBlox ZED-F9P firmware. The uBlox U-Center application software and firmware

binary can be downloaded from the uBlox ZED-F9P documentation and resources webpage.

8.1.3 ublox F9P

- 207/330 - ©2022

https://www.u-blox.com/en/product/zed-f9p-module

Enable IMX Serial Bypass - Send the system command (DID_SYS_CMD) SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_TO_GPS1 or

SYS_CMD_ENABLE_SERIAL_PORT_BRIDGE_USB_TO_GPS2 to enable serial bypass on the IMX. This will create a direct connection between the

current IMX serial port and the GPS. This is done in the EvalTool using the Factory Options dialog in the Settings -> General tab.

1.

8.1.3 ublox F9P

- 208/330 - ©2022

Update Using U-Center - With the IMX serial bypass enabled, the uBlox U-Center software can connect directly to the ZED-F9P

GPS. Use the following steps in the ublox U-Center app:

Open the serial port with baudrate 921600.

Select Tool -> Firmware Update and specify the uBlox F9P firmware file (i.e. UBX_F9_100_HPG132...bin).

Enable "Use this baudrate for update" as 921600.

Disable "Enter safeboot before update".

Enable "Send training sequence".

Start the firmware update by pressing the small green "GO" circle in the bottom left corner of the Firmware Update Utility dialog.

Power cycle the IMX.

2.

•

•

•

•

•

•

•

8.1.3 ublox F9P

- 209/330 - ©2022

Multi-Band GNSS Components

The following is a list of the ZED-F9P GNSS receivers and compatible antenna(s).

8.1.3 ublox F9P

- 210/330 - ©2022

Item Supplier# Description

ZED-

F9P-01B

ublox ZED-F9P

high precision

GNSS SMT

module. GNSS

bands: L2OF,

L2C, E1B/C,

B2I, E5b, L1C/

A, L1OF, B1I.

Concurrent

GNSS: BeiDou,

Galileo,

GLONASS, GPS

/ QZSS. RTK

1cm horizontal

accuracy.

GPS-16481 SparkFun GPS-

RTK-SMA

breakout board

with ZED-F9P

GNSS module.

SparkFun:

ANN-

MB-00

ublox:

ANN-

MB-00

ublox

Multi‑frequency

GNSS antenna

(L1, L2/E5b/

B2I) active

magnet mount.

Supports GPS,

GLONASS,

Galileo, and

BeiDou. 5m

SMA cable.

Designed for

ZED-F9P.

8.1.3 ublox F9P

- 211/330 - ©2022

https://www.u-blox.com/en/product/zed-f9p-module
https://www.u-blox.com/en/product/zed-f9p-module
https://www.sparkfun.com/products/16481
https://www.sparkfun.com/products/15192
https://www.sparkfun.com/products/15192
https://www.u-blox.com/en/product/ann-mb-series
https://www.u-blox.com/en/product/ann-mb-series

Item Supplier# Description

AA.

200.151111

Taoglas

multi‑band

GNSS antenna

(GPS/QZSS-L1/

L2, GLONASS-

G1/G2/G3,

Galileo-E1/E5a,

and BeiDou-B1/

B2) active

magnet mount.

Supports GPS,

GLONASS,

Galileo, and

BeiDou. 1.5m

SMA cable.

63.2 x 67.2

mm.

8.1.3 ublox F9P

- 212/330 - ©2022

https://www.taoglas.com/product/active-multiband-gnss-mag-mount-antenna/
https://www.taoglas.com/product/active-multiband-gnss-mag-mount-antenna/

8.1.3 ublox F9P

- 213/330 - ©2022

Item Supplier# Description

QHA.50.A.

301111

Taoglas multi-

band GNSS

antenna (GPS/

QZSS-L1/L2,

GPS/QZSS/

IRNSS-L5,

QZSS-L6,

Galileo-E1/E5a/

E5b/E6,

GLONASS-G1/

G2/G3, BeiDou-

B1/B2a/B2b/

B3). permanent

mount. IP67

rated

waterproof. 3m

RG-174 SMA

cable. 94mm

(dia).

TW8889 Tallysman

multi‑band

GNSS antenna

(GPS/QZSS-L1/

L2, GLONASS-

G1/G2/G3,

Galileo-E1/E5a,

and BeiDou-B1/

8.1.3 ublox F9P

- 214/330 - ©2022

https://www.taoglas.com/product/qha-50-a-301111-colosseum-passive-quad-helix/
https://www.taoglas.com/product/qha-50-a-301111-colosseum-passive-quad-helix/
https://www.tallysman.com/product/tw8889-dual-band-gnss-antenna/

Item Supplier# Description

B2) active

magnet mount.

Supports GPS,

GLONASS,

Galileo, and

BeiDou. 3m

SMA cable.

47mm (dia),

52g.

TW7882 Tallysman

multi‑band

GNSS antenna

(GPS/QZSS-L1/

L2, GLONASS-

G1/G2/G3,

Galileo-E1/E5a,

and BeiDou-B1/

B2) active

magnet mount.

Supports GPS,

GLONASS,

Galileo, and

BeiDou. 3m

SMA cable.

69mm (dia),

180g.

8.1.3 ublox F9P

- 215/330 - ©2022

https://www.tallysman.com/product/tw7882-dual-band-gnss-antenna/

Item Supplier# Description

HC882 Tallysman

multi‑band

helical GNSS

antenna (GPS/

QZSS-L1/L2,

GLONASS-G1/

G2/G3, Galileo-

E1/E5a, and

BeiDou-B1/B2)

active magnet

mount.

Supports GPS,

GLONASS,

Galileo, and

BeiDou. SMA.

8.1.3 ublox F9P

- 216/330 - ©2022

https://www.tallysman.com/product/hc882-dual-band-helical-antenna-l-band/

Item Supplier# Description

44.2mm (dia),

42g.

ADFGP.

50A.

07.0100C

Taoglas

embedded

multi-band

GNSS antenna

(GPS/QZSS L1/

L2, GLONASS

G1/G2/G3,

Galileo E1/E5a/

E5b, BeiDou

B1/B2a/B2b).

50x50mm,

95.5g.

8.1.3 ublox F9P

- 217/330 - ©2022

https://www.taoglas.com/product/adfgp-50a-active-gnss-dual-stacked-patch/
https://www.taoglas.com/product/adfgp-50a-active-gnss-dual-stacked-patch/
https://www.taoglas.com/product/adfgp-50a-active-gnss-dual-stacked-patch/

8.1.3 ublox F9P

- 218/330 - ©2022

Item Supplier# Description

TW1889 Tallysman

embedded

multi-band

GNSS antenna

(GPS/QZSS L1/

L2, GLONASS

G1/G2/G3,

Galileo E1/E5b,

BeiDou B1/B2).

48mm (dia),

37g.

TW3887 Tallysman

multi-band

GNSS antenna

(GPS/QZSS-L1/

L2, GLONASS-

G1/G2/G3,

Galileo-E1/E5a,

and BeiDou-B1/

B2). 60mm

(dia), 70g.

8.1.3 ublox F9P

- 219/330 - ©2022

https://www.tallysman.com/product/tw1889-embedded-dual-band-gnss-antenna/
https://www.tallysman.com/product/tw3887-embedded-dual-band-gnss-antenna/

8.2 External NMEA GNSS

GNSS receivers that output NMEA ascii protocol can be used to aid the IMX EKF.

8.2.1 Configure IMX for NMEA GNSS Input

Set serial port baudrate, matching DID_FLASH_CONFIG.serXBaudRate.

Configure GPS1 using EvalTool GPS Setting tab or the DID_FLASH_CONFIG.ioConfig.

Enable the NMEA messages on the external GNSS:

If RTK positioning is supported by the NMEA receiver, Enable RTK rover mode by selecting Precision Position External. This will

run the INS kalman filter in high accuracy mode and forward any RTK base station corrections to the external GNSS receiver.

8.2.2 Electrical Interface

The external NMEA GNSS receiver can be connected to Serial 0, Serial 1, and Serial 2 ports (3.3V TTL UART) on the IMX. See

the PCB Module hardware page for a description of the IMX pinout. Serial 0 and 2 can be accessed on the main connector of

Rugged-1 and Rugged-2 and all serial ports can be accessed on header H7 of the EVB-2.

1.

2.

DID_FLASH_CONFIG Value

ioConfig (firmware >=1.8.5) 0x00840040

3.

Message Description

GNS GNSS Fix data (preferred) or GGA - Global positioning System Fix Data.

ZDA UTC time and date.

RMC Recommended Minimum Specific GNSS Data.

GSA GNSS DOP and Active Satellites.

4.

DID_FLASH_CONFIG Value

RTKCfgBits 0x00000002

8.2 External NMEA GNSS

- 220/330 - ©2022

8.2.3 Enabling NMEA on ZED-F9P

The recommended procotol with the IMX and ZED-F9P receiver is the uBlox binary protocol. However, the ZED-F9 can operate

using NMEA protocol if necessary. The following steps can be used to enable NMEA protocol output on the ublox ZED-F9P

receiver.

Enable NMEA output using the u-blox u-center application.

Set the configuration: (ublox u-center menu -> View -> Configuration View) change the following. You must press the "Send"

button to apply each change.

PRT (Ports) - Set Baudrate to match the GPS port baudrate (i.e. ser1BaudRate 921600)

PRT (Ports) - Enable NMEA on the connected port/UART

PRT (Ports) - Enable RTCM3 on the connected port/UART if using RTK

RATE (Rates) - Measurement Period: 200ms

RATE (Rates) - Navigation Rate: 1cyc

MSG (Messages) - Enable NMEA messages listed above for the connected port/UART (i.e. UART1 On)

F0-0D NMEA GxGNS

F0-08 NMEA GxZDA

F0-04 NMEA GxRMC

F0-03 NMEA GxGSV

Save the configuration: Send the CFG (Configuration) to 1 - FLASH or press the "Save Config" button with the small gear save

icon (or menu Receiver -> Action -> Save Config).

1.

•

•

•

•

•

•

•

•

•

•

•

•

8.2.3 Enabling NMEA on ZED-F9P

- 221/330 - ©2022

https://www.u-blox.com/en/product/u-center

8.3 GNSS Antennas

8.3.1 Selecting a GNSS Antenna

Using a passive GNSS antenna is possible but not recommended. This requires a high RHCP antenna gain, good view of the

sky, and a short matched/tuned 50 Ω input impedance line. This option may be appropriate to minimize BOM costs.

Best performance is achieved by using an active antenna with integrated LNA. The LNA gain must be >17dB for standard

GPS-INS use.

For RTK and dual antenna (GPS compassing) use, the following characteristics are recommended: gain >26dB, multipath

signal rejection, better signal to noise ratio, and improved carrier phase linearity.

Antennas with integrated SAW filter may be necessary to reject interference from near frequencies or harmonic signals, such

as wireless and LTE.

For RTK and dual antenna applications we recommend dual feed (dual element) GNSS antennas

8.3.2 GNSS Antenna Integration Considerations

GNSS Antenna Ground Plane

A GNSS antenna ground plane blocks multipath signals, creating a shadow area for the antenna to hide in. The ground plane is

acting as an RF blocking device. It is made of any material that attenuates (or totally blocks or reflects) RF signals. It creates a

shadow area for the antenna to hide in. That shadow is a cone above the ground plane. Any signals that come down from the

satellites and are bouncing back upward from the earth can’t get to the antenna. Only signals coming directly from above can get

to the antenna. The distance of the physical antenna above the ground plane changes the shape of the RF blocked shadow area.

The signal gain on some antennas can be improved by increasing the ground plane size up to a given size. Beyond that given size

the antenna gain is not affected much.

A ground plane width of 8 to 12 cm is typically large enough for most applications.

HELPFUL LINKS:

u-Blox: RF design considerations for GNSS receivers Application Note

Taoglas: GPS Patch Integration Application Note

electronics.stackexchange.com: How big a ground plane does a GPS antenna need?

8.3.3 Recommended GNSS Components

The following components are optional components that may be used with the μINS, μAHRS, and μIMU.

Frequencies: GPS (L1), GLONASS (G1), Beidou (B1), and Galileo (E1).

Recommended for RTK indicates the GNSS antenna will have better performance for applications using RTK and dual GNSS

antenna (GNSS compassing).

For multi-frequency GNSS antennas, see Purchasing the ZED-F9.

•

•

•

•

•

8.3 GNSS Antennas

- 222/330 - ©2022

https://content.u-blox.com/sites/default/files/products/documents/GNSS-Antennas_AppNote_-28UBX-15030289-29.pdf
https://cdn.taoglas.com/wp-content/uploads/pdf/TAOGLAS-GPS-Patch-Antenna-Integration-Application-NoteAPN-12-8-002.B.pdf
https://electronics.stackexchange.com/questions/150849/how-big-a-ground-plane-does-a-gps-antenna-need/247725

Enclosed GNSS Antennas

The following GNSS antennas have an environmental case rated at IP67 or better.

8.3.3 Recommended GNSS Components

- 223/330 - ©2022

Manufacturer

Part Number

Description

Tallysman

TW4722

Magnet Mount, L1/G1/B1/E1 freq.,

Dual-feed, 26dB LNA, SAW filter, SMA

3m cable, Recommended for RTK

Tallysman

TW2712

Through-Hole Mount, L1/G1/B1/E1

freq., Dual-feed, 26dB LNA, SAW filter,

SMA 3m cable, Recommended for

RTK

Tallysman

TW3712

Through-Hole Mount, L1/G1/E1/B1

freq., Dual-feed, 26dB LNA, SAW filter,

SMA 3m cable, Recommended for

RTK

Taoglas

Limited

AA.162.301111

Magnet Mount, L1/G1 freq., 29dB

LNA, SAW Filter, SMA 3m cable.

Taoglas

Limited

AA.171.301111

Magnet Mount, L1/G1/E1/B1 freq.,

29dB LNA, SAW Filter, SMA 3m cable.

Abracon LLC

APAMPG-130

Magnet Mount, L1/G1 freq., 30dB

LNA, SAW Filter, SMA 3m cable.

8.3.3 Recommended GNSS Components

- 224/330 - ©2022

OEM GNSS Antennas

These non-enclosed embedded antennas have exposed PCA with no environmental protection. OEM antennas are easily detuned

by the local environment (caused by mounting inside enclosures). We recommend contacting the manufacturer for custom tuning

services for optimized integration into OEM end-user modules.

Manufacturer

Part Number

Description

Manufacturer

Part Number

Description

Tallysman

TW2708

Dual-feed, L1/G1/B1/E1 freq., 1-3 dB

axial ratio, 28dB LNA and SAW Filter,

56mm dia. x 7.6mm, RG174 cable,

Recommended for RTK

Tallysman

TW1722

Dual-feed, L1/G1/B1/E1 freq., 28dB

LNA and SAW Filter, 35mm dia. x

6mm, RG174 cable, Recommended

for RTK

Taoglas Limited

AGGBP.25A.

07.0060A

L1/G1/B1/E1 freq.. 28dB LNA and

SAW Filter, 25x25mm, U.FL 6cm cable

8.3.3 Recommended GNSS Components

- 225/330 - ©2022

Related GNSS Parts

Manufacturer

Part Number

Description

GNSS Backup Battery Seiko Instruments

MS621T-FL11E

Coin, 6.8mm 3V Lithium Battery Rechargeable (Secondary) 3mAh

GNSS Backup Battery Panasonic

ML-614S/FN

Coin, 6.8mm 3V Lithium Battery Rechargeable (Secondary) 3.4mAh

8.3.3 Recommended GNSS Components

- 226/330 - ©2022

8.4 GNSS Satellite Constellations

The uINS supports onboard M8 and external (off-board) uBlox GNSS receivers. These receivers use multiple GNSS constellations

in the global positioning solution.

The M8 receiver supports use of 3 concurrent constellations and the ZED-F9 receivers support 4 concurrent constellations (i.e.

GPS, GLONASS, Galileo, and BeiDou).

The GPX-1 module supports 4concurrent constellations.

8.4.1 Constellation Selection

The satellite constellations can be enabled or disabled by setting the corresponding enable bits in

DID_FLASH_CONFIG.gnssSatSigConst as defined by eGnssSatSigConst in data_sets.h. The following are commonly used and

recommended configuration groups.

// 3 constellations is supported by uINS onboard M8 reciever.

// (SBAS is not considered a constellation)

DID_FLASH_CONFIG.gnssSatSigConst = 0x133F // GPS/QZSS, Galileo, GLONASS, SBAS

DID_FLASH_CONFIG.gnssSatSigConst = 0x10FF // GPS/QZSS, Galileo, BeiDou, SBAS

DID_FLASH_CONFIG.gnssSatSigConst = 0x130F // GPS/QZSS, GLONASS, SBAS

// 4 constellations is supported by ZED-F9 receiver and the GPX-1 (not uINS onboard M8 receiver).

DID_FLASH_CONFIG.gnssSatSigConst = 0x13FF // GPS/QZSS, Galileo, GLONASS, BeiDou, SBAS

8.4 GNSS Satellite Constellations

- 227/330 - ©2022

8.5 RTK Positioning

8.5.1 RTK Precision Positioning

Overview

Real Time Kinematic (RTK) is a precision satellite positioning technique which utilizes a base station to transmit position

corrections to a receiver. The Inertial Sense RTK solution provides centimeter level position accuracy.

To use RTK, a base station, arover (receiver), and a method to send corrections from the base to the rover are required.

See the multi-band GNSS section for details on using our multi-frequency ZED-F9 GNSS system.

8.5 RTK Positioning

- 228/330 - ©2022

RTK Hardware Setup

BASE STATION OPTIONS

Any of the following devices can be used as a RTK base station. All Inertial Sense base station options require a GPS antenna.

Inertial Sense EVB 2 - Sends corrections using the onboard 915 MHz radio, the onboard WiFi module, either serial port, or

USB.

Inertial Sense µINS module, EVB 1 or Rugged - Sends corrections on either serial port or USB that can then be forwarded

to a rover using a communication method of choice.

3rd Party Base Station - e.g. Emlid Reach Receiver.

Public NTRIP Caster - e.g. CORS Network.

ROVER OPTIONS

The following configurations can be used for the RTK rover:

Inertial Sense EVB 2 - Can receive corrections via the onboard 915 MHz radio, onboard WiFi module, serial ports, or USB.

Inertial Sense µINS module, EVB 1 or Rugged - Can receive corrections via either serial port or USB.

BASE TO ROVER COMMUNICATION

Direct Serial - Using USB, RS232, RS422/485, or TTL to pass corrections from Base to Rover.

Radio Link - Inertial Sense EVB 2 uses the Digi Xbee Pro SX module to send RTK corrections. Other communication methods such

as Bluetooth may also work for the chosen application.

NTRIP - Transmits RTK correction data over the Internet. To receive messages with NTRIP, the user must supply a URL, port

number, and mount point . Often a username and password are also required.

TCP/IP - A protocol for communicating directly between computers. In order to receive messages using TCP/IP, an address (IP

Address or DNS) must be suppled to the Base where the corrections will be transmitted.

How to Know RTK is Working

USING THE EVALTOOL

Connect the µINS Rover to a computer with the EvalTool running. Open the comport for the unit in the Settings > Serial Ports.

Navigate to Settings > RTK.

Under the Status section, RTK functionality can be verified in 3 ways:

Status field will show Single. Over the course of several minutes this status will change to Float then Fix.

The Differential Age will show a timestamp that increments and resets back to zero about every second. This shows that the Rover

is receiving Base messages.

The Accuracy: H, V will show a large number at first. This number will decrease over time as the system acquires RTK Fix. Once in

Fix, this number will average at +- 0.08, 0.14 m.

•

•

•

•

•

•

1.

2.

3.

4.

1.

2.

3.

•

•

•

8.5.1 RTK Precision Positioning

- 229/330 - ©2022

USING THE CLTOOL

Connect the µINS Rover to a computer with the CLTool running.

Include the argument -msgPresetPPD in the CLTool command.

Observe the DID_GPS_RTK_NAV message, Status: 0x******** (Single) over the course of several minutes this will change to (Float)

then (Fix).

RTK Fix Status

LED INDICATORS

The LEDs on the IMX will indicate RTK fix status.

RTK POSITIONING VALID FLAGS

The RTK precision positioning fix status can be identified using the valid bit in the INS and GPS status flags.

RTK precision positioning fix is indicated is indicated when the RTK-Pos radio button turns purple in the EvalTool INS tab.

1.

2.

3.

LED Behavior Status Description

3D Fix, RTK Float Allows improved accuracy up to ~1m

RTK Fix Allows increased accuracy up to ~3cm

// INS status

INS_STATUS_NAV_FIX_STATUS(DID_INS_1.insStatus) == GPS_NAV_FIX_POSITIONING_RTK_FIX

// GPS status

DID_GPS1_POS.status & GPS_STATUS_FLAGS_GPS1_RTK_POSITION_VALID

8.5.1 RTK Precision Positioning

- 230/330 - ©2022

PROGRESS AND ACCURACY

The ambiguity resolution ratio, arRatio , is a metric that indicates progress of the solution that ranges from 0 to 999. Typically

values above 3 indicate RTK fix progress.

The DID_GPS1_RTK_POS_REL status can be monitored in the EvalTool GPS tab.

RTK Base Messages

The IMX RTK solution accepts both RTCM3 and uBlox raw GNSS base correction messages. See the RTK Base or NTRIP pages

for details on using base stations.

DID_GPS1_RTK_POS_REL.arRatio // Ambiguity resolution ratio

8.5.1 RTK Precision Positioning

- 231/330 - ©2022

8.5.2 Rover Setup

System Configuration

A µINS must be configured as a Rover to receive RTK Base messages. This can be done through the EvalTool or the CLTool by

enabling "Rover Mode".

EvalTool

Navigate to Settings > GPS > Rover > RTK.

Change the first drop-down menu to "Positioning (GPS1)", or one of the F9P options depending on the hardware setup.

Press Accept.

Verify the RTKCfgBits was automatically set correctly to any one of the rover modes listed in our binary communications protocol

page.

CLTool

Use the -flashConfig=rtkCfgBits=0x01 argument to configure the unit as rover where 0x01 can be any one of the rover modes

listed in our binary communications protocol page.

Communications Setup

The IMX automatically parses data that arrives at any of the ports and recognizes base corrections data. Any communications

method that sends the base corrections to one of the ports is suitable. Several common methods are described below.

EVB2 RADIO

EvalTool

The EVB-2 radio can be configured by pressing the "CONFIG" tactile switch until the light next to it is blue. This enables the

radio and configures the radio settings. See the Configurations and EVB-2 Connections sections of the EVB-2 documentation.

Under "IMX Parameters" section verify the following:

Check the Baud Rate for the serial port of the radio (ser0BaudRate or ser1BaudRate). This should match the Baud Rate of the radio.

The Digi Xbee Pro SX module on the EVB2 runs at 115200 baud.

Navigate to Data Sets > DID_EVB_FLASH_CFG

Change cbPreset - This should be set to 0x3 to enable the Digi Xbee Pro SX module.

Change radioPID - Radio Preamble ID. Should be the same number used as the Base radio. (0x0 to 0x9)

Change radioNID - Radio Network ID. Should be the same number used as the Base radio. (0x0 to 0x7FFF)

Change radioPowerLevel - Used to adjust the radio output power level. (0=20dbm, 1=27dbm, and 2=30dbm)

Reset the EVB2 and Rover radio setup is complete.

For more information on DID_EVB_FLASH_CFG see DID-descriptions.

NTRIP CLIENT

For the Rover to receive messages from an NTRIP Caster, it must be connected to an interface with internet access (e.g.

computer).

1.

2.

3.

4.

1.

•

2.

•

•

•

•

3.

8.5.2 Rover Setup

- 232/330 - ©2022

EvalTool

Follow the proceeding steps in order to set up the Rover to receive messages through NTRIP:

Navigate to Settings > RTK > Rover Mode.

Change the first drop-down menu to "RTK - GPS1"

Under Correction Input:

Type = NTRIP

Address:Port = : Ex: rtgpsout.unavco.org:2101

Username/Password = Enter the Username and Password to the account used as the NTRIP Caster. Some Casters do not require

this field.

Format = RTCM3 or UBLOX

Mount Point = Specify the mount point of the caster. Ex: P016_RTCM3 4. Press Apply.

CLTool

With the Rover µINS connected to the computer, use the -rover argument when running the CLTool executable:

-rover=TCP: Set the type to "TCP".

PROTOCOL: Set the protocol to "RTCM3" or "UBLOX". UBLOX requires more bandwidth and is not available from NTRIP casters.

URL: The URL for the NTRIP Caster.

Port: The port number will be provided by the NTRIP Caster.

MountPoint: The mount point specifies which base station the corrections come from. This number will be provided by the

NTRIP Caster.

Username:Password The username and password for the account at the given URL (Not required by some public NTRIP casters).

Example:

TCP/IP

For the Rover to receive messages from a Base Station on a local network, it must be connected to an interface with network

access (e.g. computer).

EvalTool

Follow these steps:

Navigate to Settings > GPS1

Under Correction Input:

Type = TCP

Address:Port = : e.g. 192.168.1.145:2001

Change Format to "ublox" or "RTCM3". Ublox requires more bandwidth but will result in better performance.

Press Accept.

For serial ports, view available comport numbers in the Settings tab of the EvalTool.

1.

2.

3.

•

•

•

•

•

•

•

•

•

•

•

cltool.exe -c COM10 -flashConfig=rtkCfgBits=0x01 -baud=57600 -rover=TCP:RTCM3:rtgpsout.unavco.org:2101:P016_RTCM3:username:password

1.

2.

•

•

•

3.

Hint

8.5.2 Rover Setup

- 233/330 - ©2022

CLTool

With the µINS Rover connected to the computer, enter the -rover argument when running the CLTool executable:

-rover=TCP: Set the type to "TCP".

RTCM3 Set the message type to "RTCM3" or "UBLOX". UBLOX requires more bandwidth and may be unavailable from some

NTRIP Casters.

IP_Address The IP Address of the Base Station to receive messages from.

Port You may choose any number here. This should match the port number used for the Base Station.

Example: cltool.exe -c COM10 -flashConfig=rtkCfgBits=0x01 -baud=57600 -rover=RTCM3:100.100.1.100:7777

EVB2 WIFI

Using the EVB2 WiFi module to connect to the TCP/IP Base. EVB2 can save up to 3 Networks information. (Wifi[0], Wifi[1],

Wifi[2]) Follow these steps using the EvalTool:

Under "IMX Parameters" section verify the following:

Verify the RTKCfgBits was automatically set to 0x00000001

Navigate to Data Sets > DID_EVB_FLASH_CFG

Change cbPreset - This should be set to 0x4 to enable the WiFi module.

Change wifi[0].ssid - WiFi [0] Service Set Identifier or network name.

Change wifi[0].psk - WiFi [0] Pre-Shared Key authentication or network password.

Change server[0].ipAddr - server [0] IP address.

Change server[0].port - server [0] port.

Reset the EVB2 and Rover WiFi setup is complete.

•

•

•

•

1.

•

2.

•

•

•

•

•

3.

8.5.2 Rover Setup

- 234/330 - ©2022

8.5.3 Base Setup

RTK Base Configuration

If using an NTRIP service or 3
rd

 Party Base Station instead of your own base station, please skip this page and see the NTRIP

page or reference the setup instructions for the 3
rd

 Party Base Station. NTRIP services do not require additional setup.

An essential part of an RTK system is the Base Station which supplies correction messages from a known, surveyed location to

the RTK Rover. The µINS Rover supports receiving RTCM3 and UBLOX correction messages.

Surveying In Base Position

Note

Important

8.5.3 Base Setup

- 235/330 - ©2022

Accuracy of the base position directly effects the rover absolute position accuracy. It is critical that the base position be surveyed

in for rover absolute position accuracy.

The base survey cannot happen at the same time as base correction output messages are enabled. If a survey is started the base

correction output will automatically be disabled.

The base position is stored in DID_FLASH_CONFIG.reflla and transmitted to the rover during RTK operation. The following steps

outline how to survey in the base position.

Mount base station in fixed location - The location should not change during or following a survey.

Set survey-in parameters - This step can either be done using the EvalTool or programmatically using the data set

(DID_SURVEY_IN).

EvalTool

Navigate to Settings > RTK > Base Mode.

In the "Survey In" section select one of the States:

Manual: Direct entry of base position.

Average GPS 3D - Requires standard GPS 3D lock (non-RTK mode) for survey.*

Average RTK Float - Requires RTK float state for survey.*

Average RTK Fix - Requires RTK fix for survey.

*The average methods will not run if the minimum requirements are not met. The system will wait until the requirements are met

and then begin the survey.

Use the slider to select the Survey In runtime. Generally the longer the survey runs the more accurate the results will be.

Press the Start button.

The current estimate of the survey is listed in the Position area above the Survey In section. If the survey completes successfully the

results stored in flash memory (DID_FLASH_CONFIG.reflla) which will only change if the survey is re-run.

Using DID_SURVEY_IN

The location of the base can be manually entered using (DID_FLASH_CONFIG.RefLLA) if location is known.

Set DID_SURVEY_IN.maxDurationSec - Maximum time in milliseconds the survey will run. This is ignored if it is set to 0.

Set DID_SURVEY_IN.minAccuracy - Minimum horizontal accuracy in meters for survey to complete before maxDuration. This is ignored

if it is set to 0.

Set (DID_SURVEY_IN.state) to begin the survey according to the desired survey State:

2 = Average GPS 3D - Requires standard GPS 3D lock (non-RTK mode) or better for survey.*

3 = Average RTK Float - Requires RTK float fix or better for survey.*

4 = Average RTK Fix - Requires RTK fix for survey.

*The average methods will not run if the minimum requirements are not met. The system will wait until the requirements are met

and then begin the survey.

Communications Setup

RADIO

The Base IMX must be configured to stream base corrections to the radio so it can be broadcast to the rover.

EvalTool

Open the COM port for the µINS under Settings > Serial Ports.

1.

2.

1.

2.

•

•

•

•

3.

4.

Note

1.

2.

3.

4.

•

•

•

1.

8.5.3 Base Setup

- 236/330 - ©2022

Navigate to Settings > RTK > Base Mode.

Under "Correction Output", find the fields for serial ports 0, 1, or USB. Select the serial port from which the corrections will be

transmitted. This port must also be connected to the radio. Choose one of the options listed below. Leave the unused serial port off.

"GPS1 - RTCM3": Output standard RTCM3 messages.

"GPS1 - uBlox": Output uBlox messages. This will provide more accuracy but requires significantly more bandwidth.

Change the "Data Rate(ms)" field. This determines how many milliseconds pass between message outputs (e.g. Data Rate(ms) =

1,000 means one message/second). It is usually best to match the startupGPSDtMs value found in DID_FLASH_CONFIG.

In the "Position" section, a the Base Station position is required so that it can transmit accurate corrections. Please refer to

Surveying In Base Position if the base station location is unknown.

Click Apply, and reset the µINS. The unit will now start up in Base Station mode. Verify the base station is working by looking in

the section labeled "Status". It will display the serial port of the radio and the message type. e.g. "SER1:UBX"

Navigate to Data Sets > DID_EVB_FLASH_CFG

Change cbPreset - This should be set to 0x3 to enable the Digi Xbee Pro SX module.

Change radioPID - Radio Preamble ID. Should be the same number used as the Rover radio. (0x0 to 0x9)

Change radioNID - Radio Network ID. Should be the same number used as the Rover radio. (0x0 to 0x7FFF)

Change radioPowerLevel - Used to adjust the radio output power level. (0 = 20dbm, 1 = 27dbm, and 2 = 30dbm)

Reset the EVB2 and Base radio setup is complete.

For more information on DID_EVB_FLASH_CFG see DID-descriptions.

CLTool

The RTK config bit must be set manually when using the CLTool. Use the following command line arguments when executing the

CLTool from a prompt/terminal.

-c # Open the COM port of the µINS. Windows users will use the name of the COM port, e.g. COM7. Linux users must enter

the path to the correct COM port, e.g. /dev/ttyUSB0.

-baud=# Set the baud rate for communications output (Replace # with baud rate number). This number will vary depending on

setup. For lower quality radios it maybe necessary to use a lower baud rate (ex: 57600).

-flashConfig=rtkCfgBits=0x00 Configure the unit to cast Base corrections. For more configuration options see eRTKConfigBits

Example:

If the Base Station is not communicating properly, it maybe necessary to verify that the baud rate is set to match that of the radios

used. This rate varies depending on radio type.

TCP/IP SETUP

CLTool

It is required to manually set the RTK config bits in the CLTool. Passed these to the CLTool when run from the command prompt/

terminal.

-c # Open the COM port of the µINS. Windows users will use the name of the COM port, e.g. COM7. Linux users must enter

the path to the correct COM port, e.g. /dev/ttyUSB0.

-baud=# Set the baud rate for communications output (Replace # with baud rate number).

`-flashConfig=rtkCfgBits=0x00 Configure the unit to cast Base corrections. For more configuration options see eRTKConfigBits

-base=:# Create the port over which corrections will be transmitted. Choose any unused port number.

2.

3.

•

•

4.

5.

6.

7.

•

•

•

•

8.

•

•

•

cltool.exe -c COM29 -baud=57600 -flashConfig=rtkCfgBits=0x80

Warning

•

•

•

•

8.5.3 Base Setup

- 237/330 - ©2022

Example:

If the console displays the error "Failed to open port at COMx", reset the device immediately after attempting to change the baud

rate in the CLTool.

cltool.exe -c COM29 -baud=921600 -flashConfig=rtkCfgBits=0x10 -base=:7777

Important

8.5.3 Base Setup

- 238/330 - ©2022

8.5.4 NTRIP

Networked Transport of RTCM via internet protocol, or NTRIP, is an open standard protocol for streaming differential data over

the internet in accordance with specifications published by RTCM. There are three major parts to the NTRIP system: The NTRIP

client, the NTRIP server, and the NTRIP caster:

The NTRIP server is a PC or on-board computer running NTRIP server software communicating directly with a GNSS reference

station.

The NTRIP caster is an HTTP server which receives streaming RTCM data from one or more NTRIP servers and in turn streams the

RTCM data to one or more NTRIP clients via the internet.

The NTRIP client receives streaming RTCM data from the NTRIP caster to apply as real-time corrections to a GNSS receiver.

The EvalTool/CLTool software applications provide NTRIP client functionality to be used with the IMX RTK rover. Typically an

EvalTool NTRIP client connects over the internet to an NTRIP service provider. The EvalTool/CLTool NTRIP client then provides

the RTCM 3.3 corrections to the IMX and ZED-F9P rover connected over USB or serial. Virtual reference service (VRS) is also

supported by the EvalTool/CLTool NTRIP client.

If using a virtual reference service (VRS), the rover must output the NMEA GGA message to return to the NTRIP caster. Without

this, the NTRIP caster will not provide correction information.

NTRIP RTCM3 Messages

The NTRIP server must provide the necessary subset of RTCM3 messages supported by the IMX-RTK. The following is an

example of compatible RTCM3 base output messages provided from a Trimble NTRIP RTK base station.

1.

2.

3.

Important

8.5.4 NTRIP

- 239/330 - ©2022

REQUIRED RTCM MESSAGES FOR RTK POSITIONING

Message Type Description

RTCM 1005 Stationary RTK reference station ARP

RTCM 1074, 1075, or 1077 GPS MSM4, MSM5, or MSM7

RTCM 1084, 1085, or 1087 GLONASS MSM4, MSM5, or MSM7

RTCM 1094, 1095, or 1097 Galileo MSM4, MSM5, or MSM7

RTCM 1230 GLONASS code-phase biases

8.5.4 NTRIP

- 240/330 - ©2022

8.5.5 Using uBlox PointPerfect L-band Corrections

The IMX-5 can receive corrections from the uBlox D9S device, which provides L-band corrections through the uBlox PointPerfect

solution. PointPerfect IP-based corrections are currently not supported (L-band only)

Firmware update

L-band corrections requires a later version of F9P firmware. Use FW version HPG 1.32 from the F9P downloads page on the

uBlox site.

To check your firmware version, follow these steps:

Open the Inertial Sense EvalTool

Navigate to the Data Sets tab.

Select DID_GPSx_VERSION

The firmware version is displayed in extension[1]. For Example, FWVER=HPG 1.12

To update the firmware on the F9P, follow these steps:

Open the Inertial Sense EvalTool

Navigate to the Data Sets tab. Select DID_SYS_CMD from the sidebar (see the image below)

Set command to 11 and invCommand to -12 to enable passthrough to GNSS1 (set 12 and -13 for GNSS2)

Close the serial port (Settings tab)

Open the device in uBlox u-center (we currently use u-center 22.07)

Update the firmware in u-center per u-blox instructions. Baudrate should be set to 921600.

Configuration of the F9P

By default, the IMX-5 module updates settings on the F9P at bootup. Currently the IMX:

Configures frequencies and constellations to use in the solution

Changes the CFG-SPARTN setting to use L-band corrections. IP corrections are not currently supported through the IMX-5 due

to a difference in the protocol.

The IMX acts as a transparent pipe for some UBX messages. In the mode shown below, the IMX passes the following messages:

RXM-SPARTN (from F9P)

RXM-SPARTNKEY (to/from F9P)

RXM-PMP (to F9P)

CFG-* (bidirectional)

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

•

•

•

•

•

•

8.5.5 Using uBlox PointPerfect L-band Corrections

- 241/330 - ©2022

For L-band, the messages are sent as UBX-RXM-PMP messages. No additional configuration on the IMX is needed to switch

between these messages and RTCM3, either will work. We have not tested using them together, contact uBlox if you are

considering this.

To set the SPARTNKEY message, use the u-center tool or send the proper message as specified in the HPG 1.32 manual to the

IMX. SPARTNKEY messages are passed through the IMX.

If you need to access additional settings on the F9P, you can use the serial passthrough mode used for firmware update, or there

are settings under the RTK Base tab that allow passthrough of all uBlox messages.

Corrections can be forwarded through the EvalTool using the Correction Input section of the tool. See the above screenshot for

an example configuration.

8.5.5 Using uBlox PointPerfect L-band Corrections

- 242/330 - ©2022

8.5.6 Using uBlox SBAS corrections

The uBlox F9P receivers can be configured to enable the SBAS corrections constelations

Firmware update

SBAS corrections require a later version of F9P firmware. Use FW version HPG 1.32 from the F9P downloads page on the uBlox

site. To update the firmware on the F9P, follow these steps:

Open the Inertial Sense EvalTool

Navigate to the Data Sets tab. Open DID_SYS_CMD from the sidebar (see the image below)

Set command to 11 and invCommand to -12 to enable passthrough to GNSS1 (set 12 and -13 for GNSS2)

Close the serial port (Settings tab)

Open the device in uBlox u-center (u-center 22.07)

Update the firmware in u-center per u-blox instructions. Baudrate should be set to 921600.

Configuration of the F9P

With the uBlox 1.32 firmware installed on the F9P SBAS can be enabled using the standard constelation selection methods

described in the GNSS Constelations page.

1.

2.

3.

4.

5.

6.

8.5.6 Using uBlox SBAS corrections

- 243/330 - ©2022

8.6 Dual GNSS RTK Compassing

8.6.1 Overview

RTK Compassing (Dual GNSS) is a system that determines heading by use of two GNSS receivers and antennas. It replaces the

need for magnetometers which can be problematic in the presence of ferrous materials (e.g. steel) and EMI generating circuits

(e.g. electric motors and drivers).

See the multi-band dual GNSS section for details on using our multi-frequency dual ZED-F9 GNSS system.

8.6.2 Heading Accuracy

The generalized heading accuracy for both the single-band (L1) and the dual GNSS multi-band systems under ideal conditions is

shown in the following plot.

Recommenced Minimum Baseline

The recommended minimum baseline (distance between dual GNSS antennas) is 0.3 meters for single-band (L1) GNSS

compassing and 0.25 meters for multi-band ZED-F9 GNSS compassing. The solution can operate at shorter baseline distances

but is less robust and more susceptible to getting caught in a local minimum which may not converge to the correct heading.

8.6 Dual GNSS RTK Compassing

- 244/330 - ©2022

https://inertialsense.com/product/dual-compassing-ins-sensor-series-5-ruggedized-module/

8.6.3 Antenna Orientation

It is recommended that both GNSS antennas be identical and have the same physical orientation relative to each other (i.e. the

antenna cable should exit in the same direction on both antennas). This will ensure best RF phase center alignment and heading

accuracy. The actual RF phase center is often offset from the physical center of the antenna case.

Important

Mismatch Match Match

8.6.3 Antenna Orientation

- 245/330 - ©2022

8.6.4 Rugged GNSS Antenna Ports

On the Rugged IMX, the MMCX port A is for GPS1 and MMXC port B is GPS2. These port labels are changed to 1 and 2 on

newer Rugged units.

8.6.5 Dual Antenna Locations

The location for both GPS antennae must be correctly specified by the user in the DID_FLASH_CONFIG variables within 1 cm

accuracy:

These values describe the distance of each GPS antenna from the IMX Sensor Frame origin in the direction of the Sensor Frame

axes. The Sensor Frame is defined using DID_FLASH_CONFIG.sensorConfig.

Example Antennae Configurations

The following are examples that illustrate what the GPS antenna offsets should be for two different antenna configurations.

DID_FLASH_CONFIG.gps1AntOffset[X,Y,Z]

DID_FLASH_CONFIG.gps2AntOffset[X,Y,Z]

8.6.4 Rugged GNSS Antenna Ports

- 246/330 - ©2022

DRONE

Y2

µINS
X
Y

Y1

GPS 2

Antenna

GPS 1

Antenna

DID_FLASH_CONFIG.gps1AntOffset[0] = 0.0

DID_FLASH_CONFIG.gps2AntOffset[1] = -0.3 (negative direction of Y axis)

DID_FLASH_CONFIG.gps2AntOffset[2] = 0.0

DID_FLASH_CONFIG.gps2AntOffset[0] = 0.0

DID_FLASH_CONFIG.gps2AntOffset[1] = 0.3

DID_FLASH_CONFIG.gps2AntOffset[2] = 0.0

8.6.5 Dual Antenna Locations

- 247/330 - ©2022

AUTOMOBILE

µINS

X1

Y1

X
Y

Y2
X2

GPS 1

Antenna

GPS 2

Antenna

DID_FLASH_CONFIG.gps1AntOffsetX = -0.5 (negative direction of X axis)

DID_FLASH_CONFIG.gps1AntOffsetY = 0.5

DID_FLASH_CONFIG.gps1AntOffsetZ = -0.5 (negative direction of Z axis, above IMX)

DID_FLASH_CONFIG.gps2AntOffsetX = -1.5 (negative direction of X axis)

DID_FLASH_CONFIG.gps2AntOffsetY = 0.5

DID_FLASH_CONFIG.gps2AntOffsetZ = -0.5 (negative direction of Z axis, above IMX)

8.6.5 Dual Antenna Locations

- 248/330 - ©2022

GPS Antenna Ports

The following table explains how ports A and B on the Rugged IMX map to GPS antennas 1 and 2.

8.6.6 Setup

Step 1 - Specify Offsets for Both Antennae

Refer to the Dual Antenna Locations section for a description of the GPS antenna offset.

Using EvalTool - select Data Sets -> DID_FLASH_CONFIG and set gps1AntOffset[X,Y,Z] and gps2AntOffset[X,Y,Z] with the GPS

antenna offsets.

Using CLTool - run the CLTool using the following options replacing the [OFFSET] with the GPS antenna offsets.

Step 2 - Enable GPS Dual Antenna

Set the RTK_CFG_BITS_COMPASSING (0x00000008) bit of RTKCfgBits.

Using EvalTool - go to Settings -> RTK -> Rover Mode , set the dropdown menu to GPS Compassing , and press the Apply button.

Using CLTool - run the CLTool using the -flashconfig=RTKCfgBits=0x8 option to enable GPS Dual Antenna.

8.6.7 RTK Compassing Fix Status

INS and GPS Status Flags

The RTK compassing fix status can be identified using the valid bit in the INS and GPS status flags.

RTK compassing fix is indicated when the RTK-Cmp radio button turns purple in the EvalTool INS tab.

Ports Rugged IMX IMX Module and EVB-2

GPS 1 antenna port A 1

GPS 2 antenna port B 2

DID_FLASH_CONFIG.gps1AntOffsetX = ?

DID_FLASH_CONFIG.gps1AntOffsetY = ?

DID_FLASH_CONFIG.gps1AntOffsetZ = ?

DID_FLASH_CONFIG.gps2AntOffsetX = ?

DID_FLASH_CONFIG.gps2AntOffsetY = ?

DID_FLASH_CONFIG.gps2AntOffsetZ = ?

-flashconfig=gps1AntOffsetX=[OFFSET]

-flashconfig=gps1AntOffsetY=[OFFSET]

-flashconfig=gps1AntOffsetZ=[OFFSET]

-flashconfig=gps2AntOffsetX=[OFFSET]

-flashconfig=gps2AntOffsetY=[OFFSET]

-flashconfig=gps2AntOffsetZ=[OFFSET]

DID_FLASH_CONFIG.RTKCfgBits |= RTK_CFG_BITS_COMPASSING // |= 0x00000008

DID_INS_1.insStatus & INS_STATUS_RTK_COMPASSING_VALID // INS status

DID_GPS1_POS.status & GPS_STATUS_FLAGS_GPS2_RTK_COMPASS_VALID // GPS status

8.6.6 Setup

- 249/330 - ©2022

Progress and Accuracy

The ambiguity resolution ratio, arRatio , is a metric that indicates progress of the solution that ranges from 0 to 999. Typically

values above 3 indicate RTK fix progress. The base to rover heading accuracy indicates how much error is in the base to rover

heading (RTK compassing heading).

The DID_GPS1_RTK_CMP_REL status can be monitored in the EvalTool GPS tab.

8.6.8 Stationary Application

For RTK compassing stationary application, enabling the STATIONARY INS dynamic model (DID_FLASH_CONFIG.dynamicModel

= 2) is recommended to reduce heading noise and drift. This will reduce heading error during RTK compassing fix or loss of fix.

See INS-GNSS Dynamic Model and Zero Motion Command for details.

DID_GPS1_RTK_CMP_REL.arRatio // Ambiguity resolution ratio

DID_GPS1_RTK_CMP_REL.baseToRoverHeadingAcc // (rad) RTK compassing accuracy

8.6.8 Stationary Application

- 250/330 - ©2022

9. Dead Reckoning

9.1 Ground Vehicle Dead Reckoning

9.1.1 Overview

The IMX inertial navigation integrates IMU data to dead reckon (estimate position and velocity) when GPS position fix is not

available. The amount of position error during dead reckoning can vary based on several factors including system runtime,

motion experienced, and sensor bias stability.

Knowledge about the vehicle's kinematic constraints is applied to reduce drift and improve position estimation.

9.1.2 Installation

It is critical to ensure the IMX remains fixed relative to the vehicle. Any shift or change in the IMX location relative to the vehicle will

result in degraded or inaccurate dead reckoning solution.

Heavy vibrations can degrade the IMX measurements and dead reckoning solution.

Mount the IMX and GNSS antenna at fixed locations on the vehicle.

Set the GPS antenna offsets relative to the IMX origin in meters. EvalTool > Data Sets > DID_FLASH_CONFIG > gps1AntOffsetX/Y/

Z.

Enabling

Dead reckoning is enabled by setting the DID_FLASH_CONFIG.dynamicModel to 4 for ground vehicles. This is done automatically

during Learning Mode and stored to flash memory.

Learning Mode

Learning mode is be used following installation or any change in the IMX position relative to the vehicle. Learning is used to

estimate the vehicle kinematic calibration which is used during normal operation.

LEARNING MODE INSTRUCTIONS

Start learning mode.

Drive with sufficient motion for learning. This is identified with the EvalTool GV: Cal indicator in the INS tab turns GREEN

(DID_GROUND_VEHICLE.status & GV_STATUS_LEARNING_CONVERGED is not zero). Either of the following patterns is typically adequate.

At least 200 meters straight, 5 left turns (+90 degrees) and 5 right turns

Three figure eight patterns.

Stop learning and save kinematic calibration to flash memory.

Important

Important

1.

2.

1.

2.

•

•

3.

9. Dead Reckoning

- 251/330 - ©2022

Using the EvalTool

From the EvalTool INS tab:

Press the GV: button to reveal the ground vehicle options.

Press the Start button to clear and start learning.

Press the Stop button to stop learning and save kinematic calibration to flash memory.

Using the DID_GROUND_VEHICLE Message

Enable learning mode by setting the DID_GROUND_VEHICLE.mode to any of the following commands. The DID_GROUND_VEHICLE.mode value

will toggle to 1 indicating the system is in learning mode and 0 to indicate learning mode is off.

2 "Start" - Start with user supplied values in the DID_GROUND_VEHICLE.transform and enable learning mode.

3 "Resume" - Start with the existing calibration and enable learning mode.

4 "Clear & Start" - Set transform to zero and start with aggressive learning mode. This is the same as the "Start" button in the

EvalTool INS tab.

5 "Stop & Save" - End learning mode and save kinematic calibration to flash memory.

Disable learning and save kinematic calibration to flash memory by setting DID_GROUND_VEHICLE.mode to 5.

9.1.3 Examples

Dead reckoning examples can be found here.

1.

2.

3.

1.

2.

9.1.3 Examples

- 252/330 - ©2022

9.1.3 Examples

- 253/330 - ©2022

9.2 IMX Dead Reckoning Examples

Dead Reckoning is the process of calculating the current position of a moving object by using a previously determined position,

or fix, and then incorporating estimations of speed, heading direction, and course over elapsed time. Knowledge about the

vehicle's kinematic constraints (i.e. wheels on the ground) is applied to reduce drift and improve position estimation.

Inertial Sense has added dead reckoning capability to IMX to estimate position for extended periods of time during GNSS

outages. In this report RTK-GNSS is used.

The following are examples dead reckoning of a car test vehicle. No wheel sensors were used in these examples. The dead

reckoning position is shown in the yellow "INS" line and GNSS position in the red "GNSS" line.

9.2.1 Parking Lot Simulated GNSS Outage

In this example GNSS outage was simulated by disabling GNSS fusion into the INS Kalman filter (EKF). This was done by setting

the Disable Fusion - GPS1 option found in the General settings of the EvalTool app. By disabling GPS fusion and keeping fix, we

can use the GNSS position as truth and compare it to the dead reckoning solution.

Dead reckoning duration: 30 seconds, 605 meters

Max position error: 2.5 meters, 0.4% drift

9.2 IMX Dead Reckoning Examples

- 254/330 - ©2022

INS

GNSS

Start

GNSS

Fusion

Disabled

GNSS Fusion

Re-enabled

1

2

3

4

5

6

7

8

End

In the drive the car starts and ends the drive at the bottom right corner of the image. The numbered path segments show the

order of travel. GPS fusion was disabled in the middle of path segment 5.

9.2.1 Parking Lot Simulated GNSS Outage

- 255/330 - ©2022

INS

GNSS

1

8

GNSS Fusion

Re-enabled

Start

End

2.5 m Error

When GNSS fusion is re-enabled, error in the INS solution is removed and the INS position estimate jumps back onto the GNSS

position. There is 2.5m of error between the dead reckoning position and the GNSS position.

9.2.2 Multi-Level Parking Garage

In this example our test vehicle drove in and out of a parking garage. The drive consisted of starting outside with GNSS fix,

entering the garage (losing GNSS fix), driving up one level, parking, and then following the path back down and out of the

garage where GNSS fix was regained.

Dead reckoning duration: 105 seconds, 349 meters

Exit position error: ~2 meters, 0.6% drift

9.2.2 Multi-Level Parking Garage

- 256/330 - ©2022

INS

GNSS

Here we see outside parking lot where the test vehicle started and ended. GNSS fix was lost upon entry of the garage and

regained several seconds after exiting the garage.

9.2.2 Multi-Level Parking Garage

- 257/330 - ©2022

INS

GNSS

Start

End

Exit Garage

Enter Garage

GNSS Lost

Above is the top view of the parking garage. When inside the garage, the GNSS fix is lost shown by the red line erratic deviation.

The dead reckoning (INS) position shown by the yellow line matches the actual driven path.

9.2.2 Multi-Level Parking Garage

- 258/330 - ©2022

GNSS Fix

Start

End

Exit Garage

Enter Garage

GNSS Lost

~2 m Error

INS

GNSS

TRUTH

GNSS fix was not regained until about 20 meters after exiting the garage, just prior to parking at the top right corner of the

outside parking lot. The actual position is shown by the orange truth dotted line. GNSS position is shown by the red line and

dead reckoning by the yellow INS line. GNSS fix occurs when the red GNSS line jumps and joins the orange truth dotted line.

When exiting the garage, the position error was approximately 2 meters following 105 seconds of dead reckoning from GNSS

outage.

9.2.3 Conclusion

The IMX with dead reckoning and without wheel sensor can estimate position to within ~3m over 100 seconds of typical

automotive parking lot driving.

9.2.3 Conclusion

- 259/330 - ©2022

10. General Configuration

10.1 Infield Calibration

The Infield Calibration provides a method to 1.) zero IMU biases and 2.) zero INS attitude to align the INS output frame with the

vehicle frame. These steps can be run together or independently.

10.1.1 Zeroing IMU Bias

Zeroing IMU bias is a way to remove permanent offsets in the sensor output that may have occurred as a result of manufacturing

or high shock. The system must be completely stationary for accurate bias measurement. The current value for IMU biases

stored in flash memory is viewable in DID_INFIELD_CAL.imu when infield calibration is inactive and DID_INFIELD_CAL.sampleCount is

zero.

Accelerometer Bias

In order to correct accelerometer bias on a given axis, that axis must be sampled while measuring full gravity. Thus, only the

accelerometer axes that are sampled while in the vertical direction can be corrected. In order to correct all accelerometer axes,

all three axes must be sampled while oriented vertically. The sample can be done while the axis is pointed up, down, or both up

and down for averaging.

Gyro Bias

All three axes of the gyros are sampled simultaneously, and the bias is stored in flash memory. The system must be completely

stationary for accurate bias measurement. The system does not need to be level to zero the gyro biases.

10.1.2 Zeroing INS Attitude

The Infield Calibration process can be used to align or level the INS output frame with the vehicle frame. This is done by

observing the X,Y,Z axes rotations necessary to level the orientation(s) sampled. Zeroing the INS attitude as part of the Infield

Calibration routine provides a optimal and highly accurate method for measuring the attitude while stationary by averaging raw

bias corrected accelerations.

Rotations cannot be computed for axes that are pointed vertically. For example, a single orientation sample with X and Y in the

horizontal plane and Z pointed down will only be able to produce an X,Y rotation, and the Z rotation will remain zero. To compute

all three rotations for the X,Y,Z axes, the system must be sampled at least twice, once while level and once while on its side.

The infield calibration process is generally useful for only small angle INS rotations and is not intended for those larger than 15°

per axis. The user must set the INS rotation manually for larger rotations. The INS rotation is stored and accessed in

DID_FLASH_CONFIG.insRotation in flash memory.

Because the sampled orientations are averaged together, it is recommended to only sample orientations that are at true 90°

multiples of the vehicle frame.

The zero INS attitude feature assumes there are flat rigid surface(s) attached to the IMX about which the system can be leveled.

If the working surface is not level or additional precision is desired, each orientation sampled can have an additional sample

taken with ~180° yaw offset to cancel out tilt of the working surface.

If Infield Calibration is not adequate, the INS may be leveled or aligned manually.

10. General Configuration

- 260/330 - ©2022

10.1.3 Infield Calibration Process

The following process can be used to used to improve the IMU calibration accuracy and also align or level the INS to the vehicle

frame.

Prepare Leveling Surface - Ensure the system is stable and stationary on a near-level surface with one of three axes in the

vertical direction.

Initialize the Mode - Clear any prior samples and set the calibration mode by setting DID_INFIELD_CAL.state to one of the

following:

Zeroing accelerometer biases requires that any of the X,Y,Z axes be vertically aligned with gravity during sampling. This is

indicated by bit INFIELD_CAL_STATUS_AXIS_NOT_VERTICAL = 0x01000000 in DID_INFIELD_CAL.status .

By default, the system must also be stationary without any movement during sampling. This is indicated by bit

INFIELD_CAL_STATUS_MOTION_DETECTED = 0x02000000 is set in DID_INFIELD_CAL.status . Motion detection can be disabled to make the

system more tolerant during sampling. To do this, bitwise and INFIELD_CAL_STATE_CMD_INIT_OPTION_DISABLE_MOTION_DETECT = 0x00010000

with the initialization command. As an example, the command to initialize INS alignment with zero IMU bias with motion detection

disabled is as follows:

Sample Orientation(s) - Initiate sampling of one or more orientations by setting DID_INFIELD_CAL.state to

INFIELD_CAL_STATE_CMD_START_SAMPLE = 8 . Sampling per orientation will take 5 seconds and completion is indicated when

DID_INFIELD_CAL.state switches to INFIELD_CAL_STATE_SAMPLING_WAITING_FOR_USER_INPUT = 50 .

Sample Same Orientation w/ +180° Yaw - If the working surface is not level, two samples per orientation can be taken to cancel

out the tilt of the working surface. Rotate the system approximately 180° in yaw (heading) and initiate the sampling a second time

for a given orientation.

Sample Up to Six Orientations - The sampling process can be done for up to six orientations (X,Y,Z pointed up and down). Each

sample will be automatically associated with the corresponding vertical axis and direction. All orientations will be averaged

together for both the zero IMU bias and zero INS attitude.

Store IMU Bias and/or Align INS - Following sampling of the orientations, set DID_INFIELD_CAL.state to

INFIELD_CAL_STATE_CMD_SAVE_AND_FINISH = 9 to process and save the infield calibration to flash memory. The built-in test (BIT) will

run once following this to verify the newly adjusted calibration and DID_INFIELD_CAL.state will be set to

INFIELD_CAL_STATE_SAVED_AND_FINISHED .

EvalTool or CLTool for Infield Cal

The EvalTool IMU Settings tab provides a user interface to read and write the DID_INFIELD_CAL message.

1.

2.

INFIELD_CAL_STATE_CMD_INIT_ZERO_IMU = 1, // Zero accel and gyro biases.

INFIELD_CAL_STATE_CMD_INIT_ZERO_GYRO = 2, // Zero only gyro biases.

INFIELD_CAL_STATE_CMD_INIT_ZERO_ACCEL = 3, // Zero only accel biases.

INFIELD_CAL_STATE_CMD_INIT_ZERO_ATTITUDE = 4, // Zero (level) INS attitude by adjusting INS rotation.

INFIELD_CAL_STATE_CMD_INIT_ZERO_ATTITUDE_IMU = 5, // Zero gyro and accel biases. Zero (level) INS attitude by adjusting INS rotation.

INFIELD_CAL_STATE_CMD_INIT_ZERO_ATTITUDE_GYRO = 6, // Zero only gyro biases. Zero (level) INS attitude by adjusting INS rotation.

INFIELD_CAL_STATE_CMD_INIT_ZERO_ATTITUDE_ACCEL = 7, // Zero only accel biases. Zero (level) INS attitude by adjusting INS rotation.

INFIELD_CAL_STATE_CMD_INIT_OPTION_DISABLE_MOTION_DETECT = 0x00010000, // Bitwise AND this with the above init commands to disable motion detection during

sampling (allow for more tolerant sampling).

 INFIELD_CAL_STATE_CMD_INIT_OPTION_DISABLE_REQUIRE_VERTIAL = 0x00020000, // Bitwise AND this with the above init commands to disable vertical alignment

requirement for accelerometer bias calibration (allow for more tolerant sampling).

(INFIELD_CAL_STATE_CMD_INIT_ZERO_ATTITUDE_IMU | INFIELD_CAL_STATE_CMD_INIT_OPTION_DISABLE_MOTION_DETECT);

0x00010101 = (0x00000101 | 0x00010000);

3.

•

•

4.

10.1.3 Infield Calibration Process

- 261/330 - ©2022

CLTOOL INFIELD CAL

The following options can be used with the CLTool to edit the infield calibration (DID_INFIELD_CAL).

Below is an example of the CLTool edit view of the DID_INFIELD_CAL message.

cltool -c /dev/ttyS2 -edit DID_INFIELD_CAL

$ Inertial Sense. Connected. Press CTRL-C to terminate. Rx 13657

(94) DID_INFIELD_CAL: W up, S down

 0 calData[2].down.dev[1].acc[1]

 0 calData[2].down.dev[1].acc[2]

 0 calData[2].down.yaw

 0 calData[2].up.dev[0].acc[0]

 0 calData[2].up.dev[0].acc[1]

 0 calData[2].up.dev[0].acc[2]

 0 calData[2].up.dev[1].acc[0]

 0 calData[2].up.dev[1].acc[1]

 0 calData[2].up.dev[1].acc[2]

 0 calData[2].up.yaw

 0.0398919582 imu[0].acc[0]

 0.000717461109 imu[0].acc[1]

 9.67872334 imu[0].acc[2]

 0.00583727891 imu[0].pqr[0]

 0.0135380113 imu[0].pqr[1]

 -0.00342554389 imu[0].pqr[2]

 0.0874974579 imu[1].acc[0]

 -0.167159081 imu[1].acc[1]

 9.67817783 imu[1].acc[2]

 -0.00111889921 imu[1].pqr[0]

 -0.00523020467 imu[1].pqr[1]

 0.00455262465 imu[1].pqr[2]

 0 sampleTimeMs

 50 state

 0x00B01000 * status

10.1.3 Infield Calibration Process

- 262/330 - ©2022

10.2 Platform Configuration

The DID_FLASH_CONFIG.platformConfig allows for specification of the IMX carrier board type and configuration settings. This is

important and helpful for configuring I/O specific to the platform (carrier board). Values for the Platform Config are specified in

the enum ePlatformConfig in the SDK data_sets.h.

10.2.1 Platform Type

The platform config type can be set through the EvalTool General Settings and GPS Settings tabs. Setting the Platform Config

type through the EvalTool acts as a convenience preset that automatically sets the GPS source, type, and timepulse pin selection

for the selected platform.

10.2.2 I/O Presets

The pin assignments on the RUG-3 are software configurable using the PLATFORM_CFG_PRESET_MASK bits of the

DID_FLASH_CONFIG.platformConfig . The PLATFORM_CFG_TYPE must be set to one of the RUG-3 types to enable the I/O Presets

configuration on the RUG-3. The RUG-3 main connector pin numbers are listed in parenthesis in the I/O Preset.

10.2 Platform Configuration

- 263/330 - ©2022

https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.h

10.3 IMU INS GNSS Configuration

10.3.1 Translation

The IMX can be mounted and operated in any arbitrary orientation. It is often desirable and conventional to translate the IMX

output so that it is translated into the vehicle frame located at certain point for control and navigation of the vehicle. This is done

using the Sensor Rotation, INS Rotation, and INS Offset parameters.

In most common applications, output is translated to the vehicle frame (X to the front, Y to the right, and Z down):

Sensor Rotation provides gross rotation of the IMU output in multiples of 90°.

INS Rotation provides small angle alignment of the INS output.

INS Offset shifts the location from the INS output.

Coordinate Frame Relationship

The relationship between the Hardware Frame, Sensor Frame, and INS Output Frame are as follows.

The Hardware Frame and Sensor Frame are equivalent when the Sensor Rotation in DID_FLASH_CONFIG.sensorConfig is zero.

The Hardware Frame origin and Sensor Frame origin are always at the same location and may differ in direction according

to the Sensor Rotation in DID_FLASH_CONFIG.sensorConfig . The Sensor Frame and INS output Frame are equivalent when the

DID_FLASH_CONFIG.insRotation and DID_FLASH_CONFIG.insOffset are zero.

Sensor Rotation (Hardware Frame to Sensor Frame)

The Sensor Rotation is used to rotate the IMU and magnetometer output from the hardware frame to the sensor frame by

multiples of 90°. This is done using the SENSOR_CFG_SENSOR_ROTATION_MASK bits of the DID_FLASH_CONFIG.sensorConfig as defined in

enum eSensorConfig . The Sensor Rotation is defined in X,Y,Z rotations about the corresponding axes and applied in the order of

Z,Y,X. This rotation is recommended for gross rotations.

•

•

•

10.3 IMU INS GNSS Configuration

- 264/330 - ©2022

INS Rotation

The INS rotation is used to convert the INS output from the sensor frame to the vehicle frame. This is useful if the sensor frame

and vehicle frame are not aligned. The actual INS rotation parameters are DID_FLASH_CONFIG.insRotation[3] (X, Y, Z) in radians.

The INS rotation values describes the rotation from the INS sensor frame to the intermediate frame in order of Z, Y, X.

INS Offset

The INS offset is used to shift the location of the INS output and is applied following the INS Rotation. This offset can be used to

move the IMX location from the origin of the sensor frame to any arbitrary location, often a control navigation point on the

vehicle.

Manually Aligning the INS After Mounting

NOTE for use:

The Infield Calibration process can be used instead of this process to automatically measure and align the INS with the vehicle

frame for INS rotations less than 15°.

If using software release 1.8.4 or newer, we recommend using the DID_FLASH_CONFIG.sensorConfig to rotate the sensor frame by

90° to near level before following the steps below.

The following process uses the IMX to measure and correct for the IMX mounting angle.

Set DID_FLASH_CONFIG.insRotation to zero.

Set the sensor on the ground at various known orientations and record the INS quaternion output (DID_INS_2). Using the Euler

output (DID_INS_1) can be used if the pitch is less than 15°. It is recommended to use the EKF Zero Motion Command to ensure

the EKF bias estimation and attitude have stabilized quickly before measuring the INS attitude.

Find the difference between the known orientations and the measured INS orientations and average these differences together.

Negate this average difference and enter that into the DID_FLASH_CONFIG.insRotation . This value is in Euler, however it is OK for this

step as this rotation should have just been converted from quaternion to Euler and will be converted back to quaternion on-board

for the runtime rotation.

10.3.2 Infield Calibration

The Infield Calibration provides a method to 1.) zero IMU biases and 2.) zero INS attitude to align the INS output frame with the

vehicle frame. These steps can be run together or independently.

10.3.3 GNSS Antenna Offset

If the setup includes a significant distance (40cm or more) between the GPS antenna and the IMX central unit, enter a non-zero

value for the GPS lever arm, DID_FLASH_CONFIG.gps1AntOffset (or DID_FLASH_CONFIG.gpsAnt2Offset) X,Y,Z offset in meters from

Sensor Frame origin to GPS antenna. The Sensor Frame origin and Hardware Frame origin are always at the same location but

may differ in direction according to the Sensor Rotation.

10.3.4 IMU Sample and Navigation Periods

The IMU sample period is configured by setting DID_FLASH_CONFIG.startupImuDtMs in milliseconds. This parameter determines how

frequently the IMU is measured and data integrated into the DID_PIMU data. DID_FLASH_CONFIG.startupImuDtMs also automatically

sets the bandwidth of the IMU anti-aliasing filter to less than one half the Nyquist frequency (i.e. < 250 / startupImuDtMs).

•

•

1.

2.

3.

4.

10.3.2 Infield Calibration

- 265/330 - ©2022

The preintegrated IMU (PIMU) a.k.a. Coning and Sculling (delta theta, delta velocity) integrals serve as an anti-aliased moving

average of the IMU value. The DID_IMU is the derivative of the DID_PIMU value over a single integration period.

IMU Latency

The IMU low-pass filter (LPF) adds latency (delay) to the signal in the IMU output. This latency can be expressed as:

The default IMU sensor bandwidths (cutoff frequencies) and corresponding signal latencies are:

Navigation Update and Output Periods

The navigation filter output period should be set using the flash parameter DID_FLASH_CONFIG.startupNavDtMs . This value sets the

DID_SYS_PARAMS.navOutputDtMs and DID_SYS_PARAMS.navUpdateDtMs during startup of the IMX.

The navigation filter output period (DID_SYS_PARAMS.navOutputDtMs) determines the EKF output data rate, the maximum rate for

messages DID_INS_1, DID_INS_2, and DID_INS_3.

IMU Latency \cong \frac{2.197}{LPF bandwidth}

Sensor Bandwidth Signal Latency

Gyro 539 Hz 4.1 ms

Accelerometer 416 Hz 5.3 ms

10.3.4 IMU Sample and Navigation Periods

- 266/330 - ©2022

The navigation filter update period (DID_SYS_PARAMS.navUpdateDtMs) controls the EKF update rate and sets the standard

integration period for the preintegrated IMU (PIMU) output. This parameter is automatically adjusted based on the value of

DID_SYS_PARAMS.navOutputDtMs and the amount of CPU available.

MINIMUM NAV OUTPUT AND UPDATE PERIOD (MAXIMUM DATA RATE)

The following table lists the output and update period minimum limits for the IMX.

10.3.5 INS-GNSS Dynamic Model

The DID_FLASH_CONFIG.dynamicModel setting allows the user to adjust how the EKF behaves in different dynamic environments. All

values except for 2 (STATIONARY) and 8 (AIR <4g) are experimental. The user is encouraged to attempt to use different settings

to improve performance, however in most applications the default setting, 8: airborne <4g, will yield best performance.

The STATIONARY configuration (dynamicModel = 2) can be used to configure the EKF for static applications. It is a permanent

implementation of the Zero Motion Command which will reduce EKF drift under stationary conditions.

10.3.6 Disable Magnetometer and Barometer Updates

Magnetometer and barometer updates (fusion) into the INS and AHRS filter (Kalman filter) can be disabled by setting the

following bits in DID_FLASH_CONFIG.sysCfgBits .

These settings can be disabled using the General Settings tab of the EvalTool.

Operation Mode IMX-5.0 Minimum

Output Period / Update Period

IMX-5.1, uINS-3 Minimum

Output Period / Update Period

INS (GPS enabled) 7 ms (142 Hz) / 14 ms 2 ms (500 Hz) / 4 ms

AHRS (GPS disabled) 5 ms (200 Hz) / 10 ms 2 ms (500 Hz) / 4 ms

VRS (GPS and

magnetometer disabled)

4 ms (250 Hz) / 8 ms 2 ms (500 Hz) / 4 ms

Bit Name Bit Value Description

SYS_CFG_BITS_DISABLE_MAGNETOMETER_FUSION 0x00001000 Disable magnetometer fusion into EKF

SYS_CFG_BITS_DISABLE_BAROMETER_FUSION 0x00002000 Disable barometer fusion into EKF

10.3.5 INS-GNSS Dynamic Model

- 267/330 - ©2022

10.3.7 Disable Zero Velocity Updates

Zero velocity updates (ZUPT) rely on GPS and/or wheel encoder data. In some cases there can be a slight lag/deviation when

starting motion while simultaneously rotating. This is because GPS data is updated at 5 Hz and it takes a few samples to detect

motion after a period of no motion. When ZUPT is enabled, it acts as a virtual velocity sensor telling the system that its velocity is

zero. It may conflict briefly with GPS velocity observation when starting motion. If a slight lag at the beginning of motion is an

issue, ZUPT may be disabled. Generally it should be enabled (Default). It can be disabled using DID_FLASH_CONFIG.sysCfgBits or

using the General Settings tab of the EvalTool.

10.3.8 Disable Zero Angular Rate Updates

Zero angular rate updates (ZARU) rely on analysis of either IMU (gyro) data or wheel encoders when available. When angular

motion is very slow and no wheel encoders are available a zero angular rate may be mistakenly detected, which will lead to gyro

bias estimation errors. In these cases it can be beneficial to disable ZARU if the applications has slow rotation rates

(approximately below 3 deg/s). It is not encouraged to disable ZARU if there is no rotation or faster rotation. It can be disabled

using DID_FLASH_CONFIG.sysCfgBits or using the General Settings tab of the EvalTool.

10.3.7 Disable Zero Velocity Updates

- 268/330 - ©2022

10.4 System Configuration

See the Binary Protocol page for descriptions of each flash configuration value and enumeration bit values.

10.4.1 Serial Port Baud Rates

UART standard baud rates available on the IMX are: 921600, 460800, 230400, 115200, 57600, 38400, 19200. When operating

within the standard baud rate range (<= 921600 bps), only these specific baud rates can be used. Non-standard high speed baud

rates (>921600) listed in the following section allow for arbitary custom baud rates.

High Speed Baud Rates

Non-standard high speed UART baud rates (>921600 bps) can be set to arbitrary values up to 10 Mbps. Due to hardware

limitations, the applied baud rate will be rounded to the closest available baud rate and reported back via the

DID_FLASH_CONFIG.serXBaudRate parameter.

Baud Rate Configuration

The IMX baud rate can be manually set by changing the following flash configuration parameters:

These parameters can be changed using the EvalTool or the CLTool. The following examples show how the EvalTool and CLtool

can be used to set the IMX serial port 1 baud rate to 460,800 bps.

EvalTool -> Data Sets -> DATA_FLASH_CONFIG.ser1BaudRate = 460800

Configuration Description

DID_FLASH_CONFIG.ser0BaudRate baud rate for IMX serial port 0

DID_FLASH_CONFIG.ser1BaudRate baud rate for IMX serial port 1

DID_FLASH_CONFIG.ser2BaudRate baud rate for IMX serial port 2

cltool -c COM# -flashConfig=ser0BaudRate=460800

10.4 System Configuration

- 269/330 - ©2022

10.5 Time Synchronization

10.5.1 INS & GPS Timestamps

The IMX output messages are timestamped using GPS time-base because this time is known immediately following GPS signal

reception. Conversion from GPS time to UTC time requires knowledge of the number of leap seconds (GPS-UTC) offset. This

value is received periodically (every 12.5 minutes) and is available in the DID_GPS1_POS and DID_GPS1_RTK_POS (gps_pos_t)

messages. GPS leap seconds is 18 seconds as of December 31, 2016 and will change in the future.

The original designers of GPS chose to express time and date as an integer week number (starting with the first full week in

January 1980) and a time of week (often abbreviated to TOW) expressed in seconds. Working with time/date in this form is easier

for digital systems than the more "conventional" year/month/day, hour/minute/second representation. Most GNSS receivers use

this representation internally and converting to a more "conventional form" externally.

GPS to UTC Time Conversion

UTC time is found by subtracting GPS leap seconds from the GPS time.

10.5.2 GPS Time Synchronization

Systems connected to the IMX can be time synchronized using the GPS PPS timepulse signal and any message containing GPS

time. The actual time of the GPS PPS timepulse signal is the same as any message with GPS time rounded down to the second.

The following pseudo code illustrates how this is done.

10.5.3 Using the Strobe Input Pins

The IMX has several strobe input pins which can be configured to cause the IMX to report both its internal time and full

navigation solution at the moment when triggered.

Strobe I/O Events

Strobe input and output (I/O) events are used for time and data synchronization.

// GPS Time Synchronization - Find the difference between local time and GPS time:

// 1. Sample your local time on the rising edge of the GPS PPS timepulse signal.

double ppsLocalTime = localTime();

// 2. Read the GPS time from any message WITHIN ONE SECOND FOLLOWING the GPS PPS timepulse signal.

double gpsTime = readGpsMessageTime(); // within one second after GPS PPS

// 3. Find the difference between the GPS PPS local time and the GPS time rounded down to the

// nearest second (443178.800 s down to 443178 s, or 443178800 ms down to 443178 s).

double localToGpsTimeTemp = ppsLocalTime - floor(gpsTime);

// 4. Error check to ensure you have a consistent solution

static double localToGpsTimeLast;

double localToGpsTime;

if (fabs(localToGpsTimeLast - localToGpsTimeTemp) < 0.002) // within 2ms

{

 localToGpsTime = localToGpsTimeTemp;

}

localToGpsTimeLast = localToGpsTimeTemp; // Update history

// Local time can now be converted at anytime to GPS time using 'localToGpsTime' difference.

double currentGpsTime = localTime() + localToGpsTime;

10.5 Time Synchronization

- 270/330 - ©2022

https://en.wikipedia.org/wiki/Leap_second

STROBE pins on the μIMU, μAHRS, and μINS Module - Top View

Strobe Input (Time Sync Input)

Strobe inputs are used to timestamp digital events observed on any of the pins labeled STROBE, e.g. camera shutter signals. A

STROBE input event occurs when the logic level of any STROBE pin is toggled. The transition direction can be set so that the

STROBE event triggers on a rising edge, or a falling edge. An internal 100K pull-up or pull-down resistor is enabled, depending

on the assertion direction. External pull-up or pull-down resistors are not necessary.

The STROBE input will trigger on the edge type specified. However, the minimum period between STROBE input pulses is 1 ms.

The measurement and timestamp resolution are both 1 ms.

The following pins can be used for STROBE input.

To use a pin as a Strobe Input pin, the I/O must be configured as a strobe input. Additionally, the triggering edge must be set

using the following bits in DID_FLASH_CONFIG.ioConfig .

Pushbutton “B” on the EVB asserts a logic low to G9 (pin 10) of the IMX and can be used to test the STROBE input functionality.

**Note: Holding pin 9 low at startup enables SPI which uses pins 5 and 8 making them unavailable to be used as Strobe Inputs. If

pin 9 is not held low, the internal pullup resistor holds it high at startup. This sets pins 5 and 8 as inputs which can be used as

Strobe Inputs.

Signal Module Pin EVB-1 Pin Rugged Pin EVB-2

G2 5 H2-4 12 H7-6

G5 9 H6-3 H7-9

G8 8 H6-6 H7-12

G9 10 Button "B" H7-13

Bit Name Bit Value Description

IO_CONFIG_STROBE_TRIGGER_LOW 0x00000000 Trigger strobe on falling edge

IO_CONFIG_STROBE_TRIGGER_HIGH 0x00000001 Trigger strobe on rising edge

10.5.3 Using the Strobe Input Pins

- 271/330 - ©2022

A STROBE input event causes a timestamp message and INS2 message to be transmitted. The ASCII messages $PSTRB and

$PINS2 messages are sent by default but can be disabled and replaced by the binary messages DID_STROBE_IN_TIME and DID_INS_2

if the RMC bit RMC_BITS_STROBE_IN_TIME is set for the given serial port.

Example:

Table 2 - DID_STROBE_IN_TIME message transmitted following a SYNC input event.

The STROBE input event also causes the HDW_STATUS_STROBE_IN_EVENT (0x00000020) bit of the hdwStatus field in INS

output (DID_INS_1, DID_INS_2, DID_INS_3, and DID_INS_4) to be set, allowing users to identify strobe input events using the

INS output.

TROUBLESHOOTING INPUT STROBE

If the STOBE input does not appear to be functioning properly, an oscilloscope or fast multi-meter can be used to probe the

actual STROBE line to ensure the proper 0V to 3.3V voltage swing is present. The following two tests can be used to evaluate the

proper function of the strobe source and the IMX strobe input.

TEST 1: Identify if the IMX strobe input is configured properly and has a low input impedance:

Disconnect your strobe source from the IMX. Use a 1K ohm resistor as a pull-up resistor between 3.3V and the IMX strobe input

and measure the strong input line.

Repeat using the resistor as a pull-down resistor between ground and the strobe input and measure the strobe input line.

This will tell if the IMX strobe input is somehow being driven internally or not configured correctly. If it is functioning correctly,

the line will toggle from 0V to +3.3V following the resistor pull-down and pull-up.

TEST 2: Identify if your strobe source is driving correctly:

With the IMX strobe input disconnected from your strobe driving circuit, probe the output of the strobe driving circuit and observe

what levels it toggles between.

Attach a 1M ohm pull-down resistor from ground to the strobe output and observe the strobe voltage swing.

If the circuit is working correctly, it should drive the strobe output from 0V to +3.3V despite the 1M ohm pull-down resistor.

INPUT VOLTAGE LEVEL SHIFTER

The maximum input voltage for strobe lines (any pin on the IMX) is 3.6V. A level shifter may be used to convert any strobe signal

that is larger than 3.3V. The following figure shows two passive level shifter circuits, a zener diode voltage clamp and a resistor

voltage divider.

rmc_t rmc;

rmc.bits = RMC_BITS_STROBE_IN_TIME;

int messageSize = is_comm_set_data_to_buf(buffer, bufferSize, comm, DID_RMC, sizeof(uint64_t), offsetof(rmc_t, bits), &rmc);

if (messageSize != serialPortWrite(serialPort, comm->buffer, messageSize))

{

 printf("Failed to write save persistent message\r\n");

}

Field Type Description

week uint32_t Weeks since January 6
th

, 1980

timeOfWeekMs uint32_t Time of week (since Sunday morning) in milliseconds, GMT.

pin uint32_t STROBE input pin

count uint32_t STROBE serial index number

1.

2.

1.

2.

10.5.3 Using the Strobe Input Pins

- 272/330 - ©2022

These circuits are beneficial because of their simplicity. An active, powered level shifter may also be used and necessary.

Strobe Output (Preintegrated IMU Period)

The STROBE output feature generates a 1 ms pulse on pin G9, with the leading edge marking the start of the preintegrated IMU

(PIMU) integration period. To enable this output, set the IO_CONFIG_G9_STROBE_OUTPUT_NAV bit (0x00000020) in

DID_FLASH_CONFIG.ioConfig . The polarity of the pulse is configured by setting the IO_CONFIG_STROBE_TRIGGER_HIGH bit (0x00000001)

in the same field.

Configuring Message Output

By default, triggering a strobe input event will cause the IMX to produce an NMEA PINS2 message as well as a PSTRB message

which contains the time stamp of the strobe event.

To instead send a binary DID_INS_2 and DID_STROBE_IN_TIME message, set the RMC_BITS_STROBE_IN_TIME flag of DID_RMC/

bits field.

10.5.3 Using the Strobe Input Pins

- 273/330 - ©2022

10.6 Zero Motion Command

The Zero Motion Command is user initiated and informs the EKF that the system is stationary on the ground. It is used to aid in

IMU bias estimation which can reduce drift in the INS attitude. It works as a virtual velocity and angular rate sensor to provide

velocity and angular rate observations when the INS is stationary (zero velocity and zero angular rate). This is done for a period

of two seconds after the Zero Motion Command is received. The Zero Motion Command is beneficial for the following reasons:

Overriding incorrect GPS motion caused by weak GPS signal.

Speeding up gyro biases convergence time when there is no GPS signal.

In normal AHRS mode (stationary with or without GPS), only the IMU gyro biases are estimated by the EKF. Setting

DID_FLASH_CONFIG.dynamicModel = DYNAMIC_MODEL_STATIONARY (2) is equivalent to continually issuing the zero motion command.

To use the Zero Motion Command:

Ensure the system is stationary on the ground.

Send the Zero Motion Command either once or continuously while the system is stationary. This can be done either by using the

Zero Motion button in the EvalTool General Settings tab or by sending the DID_SYS_CMD binary message.

After sending the Zero Motion Command, wait for the INS_STATUS_STATIONARY_MODE status bit to clear in DID_INS_x.insStatus

before moving the system. This flag takes about 2 seconds to clear following the last Zero Motion Command.

Applying this command more than one time can further improve the IMU bias estimation.

 Issuing the Zero Motion Command while the system is moving can cause incorrect IMU bias estimates and lead to poor INS

performance. It is important to make sure that the system is stationary when using the Zero Motion Command.

•

•

1.

2.

3.

Warning

10.6 Zero Motion Command

- 274/330 - ©2022

10.7 UART Interface

The IMX has different UART TTL serial ports. These serial ports can be converted from TTL to RS232 or RS422 using a level

converter, such as found on the Rugged-3, EVB-1, and EVB-2 carrier boards.

10.7.1 Actual UART Baud Rates

The serial ports use different peripherals so the actual baud rates of the ports differ.

Due to UART limitations, the actual baud rate that the hardware is capable of generating differs from the target or desired

baud rate. This difference is more pronounced at higher baud rates (>921600 bps). The following table outlines these

differences.

IMX-5 UART Baud Rate Equation

The actual baud rate that the IMX-5 hardware is capable of generating is described in the following equation.

Baud rates <= 5 Mbps:

Baud rates > 5 Mbps:

uINS-3 UART Baud Rate Equation

The actual baud rate that the IMX-5 hardware is capable of generating is described in the following equations.

Target Baud Rate (bps) IMX-5

Actual Baud Rate (bps)

uINS-3

Actual Baud Rate (bps)

19,200 19,198 19,191

38,400 38,406 38,422

57,600 57,595 57,515

115,200 115,273 115,030

230,400 230,547 231,481

460,800 459,770 457,317

921,600 919,540 937,500

3,200,000 3,125,000

4,000,000 3,750,000

5,000,000 4,687,500

8,000,000 6,250,000

10,000,000 9,375,000

Divisor = floor((80e6 + ((Target Baud Rate)/2)) / (Target Baud Rate))

Actual Baud Rate = floor(80e6 / Divisor)

Divisor = floor((160e6 + ((Target Baud Rate)/2)) / (Target Baud Rate))

Actual Baud Rate = floor(160e6 / Divisor)

Divisor = floor((18750000 + ((Target Baud Rate)/2)) / (Target Baud Rate))

Actual Baud Rate = floor(18750000 / Divisor)

10.7 UART Interface

- 275/330 - ©2022

11. SDK

11.1 Inertial Sense SDK

The Inertial Sense software development kit (SDK) is hosted on GitHub.

SDK - The Inertial Sense open source software development kit provides quick integration for communication with the Inertial

Sense product line, including the IMX, uAHRS, and IMX. It includes data logger, math libraries, and serial port interface for

Linux and Windows environments.

EvalTool executable - Graphical Windows-based desktop program that allows you to explore and test functionality of the

Inertial Sense products in real-time. It has scrolling plots, 3D model representation, table views of all data, data logger, and

firmware updating interface for the IMX, uAHRS, or uIMU. The EvalTool can simultaneously interface with multiple Inertial

Sense devices.

CLTool - Command line utility that can be used to communicate, log data, and update firmware for Inertial Sense products.

Additionally, InertialSenseCLTool serves as example source code to demonstrate how to integrate the Inertial Sense SDK into

your own source code. The InertialSenseCLTool can be compiled in Linux and Windows.

EVB-2 - Multi-purpose hardware evaluation and development kit for the IMX. The EVB-2 includes the IMX-G2 with Dual GNSS,

RTK heading / positioning, onboard logging to micro SD card, 915MHz XBee radio for RTK base corrections, WiFi and BLE

interface, serial and SPI communications to IMX interface, and Microchip SAME70 processor as communications bridge and user

project development environment.

ROS - The inertial-sense-sdk/ros directory contains the ROS wrapper node implementation for the Inertial Sense IMX product

line.

Documents

User Manual, Datasheet, and Dimensions

Inertial Sense ROS Instructions

Downloads

SDK Example Projects - Source code projects that demonstrations of how to use the SDK.

Software Releases - IMX, uAHRS, uIMU, and EVB-2 firmware and application installers.

SDK & CLTool Source Code - Open source SDK repository with command line tool and example C/C++ source code.

Hardware Design Files

IS-hdw repository - CAD models of our products and PCB design assets for integration.

Support

Email - support@inertialsense.com

•

•

•

•

•

•

•

11. SDK

- 276/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK
https://github.com/inertialsense/inertial-sense-sdk/tree/main/ROS
http://docs.inertialsense.com/
https://github.com/inertialsense/inertial-sense-sdk/blob/main/ros/README.md
https://github.com/inertialsense/InertialSenseSDK/tree/release/ExampleProjects
https://github.com/inertialsense/InertialSenseSDK/releases
https://github.com/inertialsense/InertialSenseSDK
https://github.com/inertialsense/IS-hdw
mailto:support@inertialsense.com

Open Source License

MIT LICENSE

Copyright 2014-2025 Inertial Sense, Inc. - http://inertialsense.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation

files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions :

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF

OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

© 2014-2025 Inertial Sense, Inc.

11.1 Inertial Sense SDK

- 277/330 - ©2022

http://inertialsense.com

11.2 Example Projects

11.2.1 Binary Communications Example Project

This IS Communications Example project demonstrates binary communications with the

Inertial Sense Products (IMX, uAHRS, and uIMU) using the Inertial Sense SDK.

Files

Project Files

ISCommunicationsExample.cpp

SDK Files

data_sets.c

data_sets.h

ISComm.c

ISComm.h

serialPort.c

serialPort.h

serialPortPlatform.c

serialPortPlatform.h

Implementation

STEP 1: ADD INCLUDES

STEP 2: INIT COMM INSTANCE

STEP 3: INITIALIZE AND OPEN SERIAL PORT

STEP 4: STOP ANY MESSAGE BROADCASTING

•

•

•

•

•

•

•

•

•

// Change these include paths to the correct paths for your project

#include "../../src/ISComm.h"

#include "../../src/serialPortPlatform.h"

#include "../../src/ISPose.h"

 is_comm_instance_t comm;

 uint8_t buffer[2048];

 // Initialize the comm instance, sets up state tracking, packet parsing, etc.

 is_comm_init(&comm, buffer, sizeof(buffer));

 serial_port_t serialPort;

 // Initialize the serial port (Windows, MAC or Linux) - if using an embedded system like Arduino,

 // you will need to handle the serial port creation, open and reads yourself. In this

 // case, you do not need to include serialPort.h/.c and serialPortPlatform.h/.c in your project.

 serialPortPlatformInit(&serialPort);

 // Open serial, last parameter is a 1 which means a blocking read, you can set as 0 for non-blocking

 // you can change the baudrate to a supported baud rate (IS_BAUDRATE_*), make sure to reboot the IMX

 // if you are changing baud rates, you only need to do this when you are changing baud rates.

 if (!serialPortOpen(&serialPort, argv[1], IS_BAUDRATE_921600, 1))

 {

 printf("Failed to open serial port on com port %s\r\n", argv[1]);

 return -2;

 }

 int messageSize = is_comm_stop_broadcasts_all_ports(comm);

 if (messageSize != serialPortWrite(serialPort, comm->buf.start, messageSize))

 {

 printf("Failed to encode and write stop broadcasts message\r\n");

 }

11.2 Example Projects

- 278/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/tree/release/ExampleProjects/Communications
https://inertialsense.com/products
https://github.com/inertialsense/InertialSenseSDK/tree/release/ExampleProjects/Communications/ISCommunicationsExample.cpp
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPort.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPort.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPortPlatform.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPortPlatform.h

STEP 5: SET CONFIGURATION (OPTIONAL)

STEP 6: ENABLE MESSAGE BROADCASTING

STEP 7: SAVE PERSISTENT MESSAGES

(OPTIONAL) Save currently enabled streams as persistent messages enabled after reboot.

STEP 8: HANDLE RECEIVED DATA

 // Set INS output Euler rotation in radians to 90 degrees roll for mounting

 float rotation[3] = { 90.0f*C_DEG2RAD_F, 0.0f, 0.0f };

 int messageSize = is_comm_set_data_to_buf(comm, DID_FLASH_CONFIG, sizeof(float) * 3, offsetof(nvm_flash_cfg_t, insRotation), rotation);

 if (messageSize != serialPortWrite(serialPort, comm->buf.start, messageSize))

 {

 printf("Failed to encode and write set INS rotation\r\n");

 }

 // Ask for INS message w/ update 40ms period (4ms source period x 10). Set data rate to zero to disable broadcast and pull a single packet.

 int messageSize = is_comm_get_data_to_buf(buffer, bufferSize, comm, DID_INS_1, 0, 0, 10);

 if (messageSize != serialPortWrite(serialPort, comm->buf.start, messageSize))

 {

 printf("Failed to encode and write get INS message\r\n");

 }

 // Ask for GPS message at period of 200ms (200ms source period x 1). Size and offset can be left at 0 unless you want to just pull a specific field from

a data set.

 messageSize = is_comm_get_data_to_buf(buffer, bufferSize, comm, DID_GPS1_POS, 0, 0, 1);

 if (messageSize != serialPortWrite(serialPort, comm->buf.start, messageSize))

 {

 printf("Failed to encode and write get GPS message\r\n");

 }

 // Ask for IMU message at period of 96ms (DID_FLASH_CONFIG.startupNavDtMs source period x 6). This could be as high as 1000 times a second (period

multiple of 1)

 messageSize = is_comm_get_data_to_buf(buffer, bufferSize, comm, DID_IMU, 0, 0, 6);

 if (messageSize != serialPortWrite(serialPort, comm->buf.start, messageSize))

 {

 printf("Failed to encode and write get IMU message\r\n");

 }

 system_command_t cfg;

 cfg.command = SYS_CMD_SAVE_PERSISTENT_MESSAGES;

 cfg.invCommand = ~cfg.command;

 int messageSize = is_comm_set_data_to_buf(buffer, bufferSize, comm, DID_SYS_CMD, 0, 0, &cfg);

 if (messageSize != serialPortWrite(serialPort, comm->buf.start, messageSize))

 {

 printf("Failed to write save persistent message\r\n");

 }

 uint8_t inByte;

 // You can set running to false with some other piece of code to break out of the loop and end the program

 while (running)

 {

 // Read one byte with a 20 millisecond timeout

 while (serialPortReadCharTimeout(&serialPort, &inByte, 20) > 0)

 {

 switch (is_comm_parse_byte(&comm, inByte))

 {

 case _PTYPE_INERTIAL_SENSE_DATA:

 switch (comm.dataHdr.id)

 {

 case DID_INS_1:

 handleIns1Message((ins_1_t*)comm.pkt.data.ptr);

 break;

 case _DID_INS_LLA_QN2B:

 handleIns2Message((ins_2_t*)comm.pkt.data.ptr);

 break;

 case DID_GPS1_POS:

 handleGpsMessage((gps_pos_t*)comm.pkt.data.ptr);

 break;

 case _DID_PIMU:

 handleImuMessage((dual_imu_t*)comm.pkt.data.ptr);

 break;

 // TODO: add other cases for other data ids that you care about

 }

 break;

 default:

 break;

 }

11.2.1 Binary Communications Example Project

- 279/330 - ©2022

Compile & Run (Linux/Mac)

Create build directory

Run cmake from within build directory

Compile using make

If necessary, add current user to the "dialout" group in order to read and write to the USB serial communication ports:

Run executable

Compile & Run (Windows Powershell)

*Note - Install CMake for Windows natively, or install the CMake for Windows extension for Visual Studio

Create build directory

Run cmake from within build directory

Compile using make

Run executable

Summary

This section has covered the basic functionality you need to set up and communicate with Inertial Sense products. If this doesn't

cover everything you need, feel free to reach out to us on the Inertial Sense SDK GitHub repository, and we will be happy to help.

 }

 }

1.

cd InertialSenseSDK/ExampleProjects/Communications

mkdir build

2.

cd build

cmake ..

3.

make

4.

sudo usermod -a -G dialout $USER

sudo usermod -a -G plugdev $USER

(reboot computer)

5.

./ISCommunicationsExample /dev/ttyUSB0

1.

cd InertialSenseSDK/ExampleProjects/Communications

mkdir build

2.

cd build

cmake ..

3.

cmake --build .

4.

C:\InertialSenseSDK\ExampleProjects\Communications\build\Release\ISCommunicationsExample.exe COM3

11.2.1 Binary Communications Example Project

- 280/330 - ©2022

https://inertialsense.com
https://github.com/inertialsense/InertialSenseSDK

11.2.2 ASCII Communications Example Project

This IS Communications Example project demonstrates binary communications with the

Inertial Sense Products (IMX, uAHRS, and uIMU) using the Inertial Sense SDK. See the

ASCII protocol section for details on the ASCII packet structures.

Files

Project Files

ISAsciiExample.c

SDK Files

data_sets.c

data_sets.h

ISComm.c

ISComm.h

ISConstants.h

serialPort.c

serialPort.h

serialPortPlatform.c

serialPortPlatform.h

Implementation

STEP 1: ADD INCLUDES

STEP 2: INITIALIZE AND OPEN SERIAL PORT

STEP 3: DISABLE PRIOR MESSAGE BROADCASTING

STEP 4: ENABLE MESSAGE BROADCASTING

•

•

•

•

•

•

•

•

•

•

// Change these include paths to the correct paths for the project

#include "../../src/ISComm.h"

#include "../../src/serialPortPlatform.h"

 serial_port_t serialPort;

 // Initialize the serial port (Windows, MAC or Linux) - if using an embedded system like Arduino,

 // you will need to handle the serial port creation, open and reads yourself. In this

 // case, you do not need to include serialPort.h/.c and serialPortPlatform.h/.c in your project.

 serialPortPlatformInit(&serialPort);

 // Open serial, last parameter is a 1 which means a blocking read, you can set as 0 for non-blocking

 // you can change the baudrate to a supported baud rate (IS_BAUDRATE_*), make sure to reboot the IMX

 // if you are changing baud rates, you only need to do this when you are changing baud rates.

 if (!serialPortOpen(&serialPort, argv[1], IS_BAUDRATE_921600, 1))

 {

 printf("Failed to open serial port on com port %s\r\n", argv[1]);

 }

// Stop all broadcasts on the device on all ports. We don't want binary message coming through while we are doing ASCII

if (!serialPortWriteAscii(&serialPort, "STPB", 4))

{

 printf("Failed to encode stop broadcasts message\r\n");

}

 // ASCII protocol is based on NMEA protocol https://en.wikipedia.org/wiki/NMEA_0183

 // turn on the INS message at a period of 100 milliseconds (10 hz)

 // serialPortWriteAscii takes care of the leading $ character, checksum and ending \r\n newline

 // ASCE message enables ASCII broadcasts

 // ASCE fields: 1:options, ID0, Period0, ID1, Period1, ID19, Period19

 // IDs:

 // NMEA_MSG_ID_PIMU = 0,

 // NMEA_MSG_ID_PPIMU = 1,

 // NMEA_MSG_ID_PRIMU = 2,

11.2.2 ASCII Communications Example Project

- 281/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/tree/release/ExampleProjects/Ascii
https://inertialsense.com/products
https://github.com/inertialsense/InertialSenseSDK/tree/release/ExampleProjects/Ascii/ISAsciiExample.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISConstants.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPort.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPort.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPortPlatform.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPortPlatform.h

STEP 5: SAVE PERSISTENT MESSAGES

(OPTIONAL) This remembers the current communications and automatically streams data following reboot.

STEP 6: HANDLE RECEIVED DATA

Compile & Run (Linux/Mac)

Create build directory

Run cmake from within build directory

Compile using make

If necessary, add current user to the "dialout" group in order to read and write to the USB serial communication ports:

Run executable

 // NMEA_MSG_ID_PINS1 = 3,

 // NMEA_MSG_ID_PINS2 = 4,

 // NMEA_MSG_ID_PGPSP = 5,

 // NMEA_MSG_ID_GNGGA = 6,

 // NMEA_MSG_ID_GNGLL = 7,

 // NMEA_MSG_ID_GNGSA = 8,

 // NMEA_MSG_ID_GNRMC = 9,

 // NMEA_MSG_ID_GNZDA = 10,

 // NMEA_MSG_ID_PASHR = 11,

 // NMEA_MSG_ID_PSTRB = 12,

 // NMEA_MSG_ID_INFO = 13,

 // NMEA_MSG_ID_GNGSV = 14,

 // NMEA_MSG_ID_GNVTG = 15,

 // NMEA_MSG_ID_INTEL = 16,

 // options can be 0 for current serial port, 1 for serial 0, 2 for serial 1 or 3 for both serial ports

 // Instead of a 0 for a message, it can be left blank (,,) to not modify the period for that message

 // please see the user manual for additional updates and notes

 // Get PINS1 @ 5Hz on the connected serial port, leave all other broadcasts the same, and save persistent messages.

 const char* asciiMessage = "ASCE,0,3,1";

 // Get PINS1 @ 1Hz and PGPSP @ 1Hz on the connected serial port, leave all other broadcasts the same

 // const char* asciiMessage = "ASCE,0,5,5";

 // Get PIMU @ 50Hz, GGA @ 5Hz, serial0 and serial1 ports, set all other periods to 0

 // const char* asciiMessage = "ASCE,3,6,1";

 if (!serialPortWriteAscii(&serialPort, asciiMessage, (int)strnlen(asciiMessage, 128)))

 {

 printf("Failed to encode ASCII get INS message\r\n");

 }

if (!serialPortWriteAscii(&serialPort, "PERS", 4))

{

 printf("Failed to encode ASCII save persistent message\r\n");

}

 // STEP 4: Handle received data

 unsigned char* asciiData;

 unsigned char asciiLine[512];

 // you can set running to false with some other piece of code to break out of the loop and end the program

 while (running)

 {

 if (serialPortReadAscii(&serialPort, asciiLine, sizeof(asciiLine), &asciiData) > 0)

 {

 printf("%s\n", asciiData);

 }

 }

1.

cd InertialSenseSDK/ExampleProjects/Ascii

mkdir build

2.

cd build

cmake ..

3.

make

4.

sudo usermod -a -G dialout $USER

sudo usermod -a -G plugdev $USER

(reboot computer)

5.

11.2.2 ASCII Communications Example Project

- 282/330 - ©2022

Compile & Run (Windows Powershell)

*Note - Install CMake for Windows natively, or install the CMake for Windows extension for Visual Studio

Create build directory

Run cmake from within build directory

Compile using make

Run executable

Summary

This section has covered the basic functionality you need to set up and communicate with Inertial Sense products. If this doesn't

cover everything you need, feel free to reach out to us on the Inertial Sense SDK GitHub repository, and we will be happy to help.

./ISAsciiExample /dev/ttyUSB0

1.

cd InertialSenseSDK/ExampleProjects/Ascii

mkdir build

2.

cd build

cmake ..

3.

cmake --build .

4.

C:\InertialSenseSDK\ExampleProjects\Ascii\build\Release\ISAsciiExample.exe COM3

11.2.2 ASCII Communications Example Project

- 283/330 - ©2022

https://inertialsense.com
https://github.com/inertialsense/InertialSenseSDK

11.2.3 Basic Arduino Communications Example Project

Interfacing with the IMX over serial

This example shows how to communicate with the IMX using the Inertial Sense Binary Communications Protocol. The example

code can be found in the Inertial Sense SDK/ExampleProjects/Arduino.

Update the IMX to the latest firmware

This example demonstrates how to use the Inertial Sense EVB with an Arduino Due. The Due was selected because it has two

serial ports. This way the Arduino can communicate with the IMX using one of the ports, and write the output over the Serial

Monitor to the computer using the other.

The InertialSense SDK requires 64-bit double support. 32-bit processors (Arduino Due, Zero, and M0) are supported. 8-bit processors

(i.e. Arduino Mega and Uno) are NOT supported. The ASCII protocol (not covered in this example) may be used on an 8-bit Arduino.

A Raspberry PI (similar in price to the Arduino) is a good alternative to the Arduino. Either the Binary Communications and ASCII

Communications example projects can be run on a Raspberry PI.

Important

Warning

Note

11.2.3 Basic Arduino Communications Example Project

- 284/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK
https://github.com/inertialsense/InertialSenseSDK/releases
https://www.raspberrypi.org/products/

Wiring Guide

After downloading the Inertial Sense SDK, Navigate to ExampleProjects/Arduino/ReadIS. Use the ImportSdkFiles.bat (Windows)

or ImportSdkFiles.sh (Linux) to copy the required files from the SDK into src/ISsdk directory. The resulting file structure for the

ReadIS Arduino sketch should look like the following:

An .ino file is the arduino extension for a sketch. It is actually C++ code.

Note that there are two .c files in the tree. You'll need to make sure that these files are compiled by the toolchain, otherwise

xxxx is not defined errors can occur.

|-ReadIS

 | - ImportSdkFiles.bat

 | - ImportSdkFiles.sh

 | - ReadIS.ino

 | - src

 | - ISsdk

 | - data_sets.c

 | - data_sets.h

 | - ISComm.c

 | - ISComm.h

 | - ISConstants.h

What is an ino file?

Note

11.2.3 Basic Arduino Communications Example Project

- 285/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK

SDK Implementation

ReadIS.ino file explained:

STEP 1: ADD INCLUDES

The "ISComm.h" header file includes all the other required code. stddef.h file from the standard library is required for the

offsetof function.

STEP 2: CREATE BUFFERS

Next, define a buffer to hold data. As the IMX sends data, this buffer is used to hold the data until a full message arrives. This

buffer only needs to be as big as the largest message expected, multiplied by two + 32 (worst case scenario if there is a bad

transmission). For this example a 1KB buffer is used.

STEP 3: SERIAL PORT INITIALIZATION

Initialize the communication using the following steps as shown above:

Initialize the serial ports

Tell the communication interface where to find the buffer to use to hold messages, and how big that buffer is.

Reset communications on the device

Perform configuration of the IMX

Tell the IMX what data to stream, and how often

Whenever sending a command to the IMX, the command is put into the buffer, and the length of the message is returned by one

of the configuration functions. That buffer needs to be written out to the IMX for the command to be received.

 It is recommended to use the enumerations in data_sets.h such as SYS_CFG_BITS_RTK_ROVER to configure the device. This aids

code readability and reduces the chance for errors.

#include "src/ISsdk/ISComm.h"

#include <stddef.h>

// This buffer is going to be used to hold messages as they come in.

// You can make this 512 size if memory is tight.

static uint8_t s_buffer[1024];

// create an instance to hold communications state

static is_comm_instance_t comm;

void setup()

{

 // Initialize both serial ports:

 Serial.begin(115200);

 Serial1.begin(115200);

 if (sizeof(double) != 8)

 {

 Serial.println("Inertial Sense SDK requires 64 bit double support");

 while (true)

 {

 };

 }

 Serial.println("initializing");

 // Initialize comm interface - call this before doing any comm functions

 is_comm_init(&comm, s_buffer, sizeof(s_buffer));

 // Stop all the broadcasts on the device

 int messageSize = is_comm_stop_broadcasts_all_ports(&comm);

 Serial1.write(comm.rxBuf.start, messageSize); // Transmit the message to the inertialsense device

 // Ask for ins_1 message 20 times per second. Ask for the whole thing, so

 // set 0's for the offset and size

 messageSize = is_comm_get_data_to_buf(buffer, bufferSize, &comm, DID_INS_1, sizeof(ins_1_t), 0, 1000);

 Serial1.write(comm.rxBuf.start, messageSize); // Transmit the message to the inertialsense device

}

1.

2.

3.

4.

5.

Tip

11.2.3 Basic Arduino Communications Example Project

- 286/330 - ©2022

In this example, the DID_INS_1 message is streamed. All available messages can be found in the data_sets.h file, defined as C-

style structs.

STEP 4: HANDLE RECEIVED DATA

In this code, every byte that we receive from the IMX is passed to the is_comm_parse function. For each byte received, this function

waits for a complete message in the buffer and decodes it. Once a full message is received, it identifies what kind of message is in

the buffer so it can be handled correctly. The easiest way to deal with this is to us a case structure as shown above, with separate

"callback" functions for each message type.

The INS message handler is just printing the position in lla, velocity and euler angle attitude to the screen. Other

parameterizations of position and attitude are available in other DID_INS_x messages.

void loop()

{

 // Read from port 1, and see if we have a complete inertialsense packet

 if (Serial1.available())

 {

 uint8_t inByte = Serial1.read();

 // This function returns the DID of the message that was just parsed, we can then point the buffer to

 // the right function to handle the message. We can use a cast to interpret the s_buffer as the

 // kind of message that we received.

 uint32_t message_type = is_comm_parse_byte(&comm, inByte);

 switch (message_type)

 {

 case _PTYPE_INERTIAL_SENSE_DATA:

 switch (comm.dataHdr.id)

 {

 case DID_NULL:

 break;

 case DID_INS_1:

 handleINSMessage((ins_1_t *)(comm.pkt.data.ptr));

 break;

 default:

 Serial.print("Got an unexpected message DID: ");

 Serial.println(message_type, DEC);

 }

 }

 }

}

static void handleINSMessage(ins_1_t *ins)

{

 Serial.print("Lat: ");

 Serial.print((float)ins->lla[0], 6);

 Serial.print("\t");

 Serial.print(", Lon: ");

 Serial.print((float)ins->lla[1], 6);

 Serial.print("\t");

 Serial.print(", Alt: ");

 Serial.print((float)ins->lla[2], 2);

 Serial.print("\t");

 Serial.print(", roll: ");

 Serial.print(ins->theta[0] * C_RAD2DEG_F);

 Serial.print("\t");

 Serial.print(", pitch: ");

 Serial.print(ins->theta[1] * C_RAD2DEG_F);

 Serial.print("\t");

 Serial.print(", yaw: ");

 Serial.print("\t");

 Serial.println(ins->theta[2] * C_RAD2DEG_F);

}

11.2.3 Basic Arduino Communications Example Project

- 287/330 - ©2022

11.2.4 Firmware Update (Bootloader) Example Project

This ISBootloaderExample project demonstrates firmware update with the InertialSense products (IMX, uAHRS, and uIMU)

using the Inertial Sense SDK.

Files

Project Files

ISBootloaderExample.cpp

SDK Files

data_sets.c

data_sets.h

inertialSenseBootLoader.c

inertialSenseBootLoader.h

ISComm.c

ISComm.h

serialPort.c

serialPort.h

serialPortPlatform.c

serialPortPlatform.h

Implementation

STEP 1: ADD INCLUDES

STEP 2: INITIALIZE AND OPEN SERIAL PORT

STEP 3: SET BOOTLOADER PARAMETERS

•

•

•

•

•

•

•

•

•

•

•

// Change these include paths to the correct paths for your project

#include "../../src/ISComm.h"

#include "../../src/serialPortPlatform.h"

#include "../../src/ISBootloaderThread.h"

#include "../../src/ISBootloaderBase.h"

#include "../../src/ISSerialPort.h"

 serial_port_t serialPort;

 // initialize the serial port (Windows, MAC or Linux) - if using an embedded system like Arduino,

 // you will need to either bootload from Windows, MAC or Linux, or implement your own code that

 // implements all the function pointers on the serial_port_t struct.

 serialPortPlatformInit(&serialPort);

 // set the port - the bootloader uses this to open the port and enable bootload mode, etc.

 serialPortSetPort(&serialPort, argv[1]);

 // bootloader parameters

 bootload_params_t param;

 // very important - initialize the bootloader params to zeros

 memset(¶m, 0, sizeof(param));

 // the serial port

 param.port = &serialPort;

 param.baudRate = atoi(argv[2]);

 // the file to bootload, *.hex

 param.fileName = argv[3];

 // optional - bootloader file, *.bin

 param.forceBootloaderUpdate = 0; //do not force update of bootloader

 if (argc == 5)

 param.bootName = argv[4];

 else

 param.bootName = 0;

11.2.4 Firmware Update (Bootloader) Example Project

- 288/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/tree/release/ExampleProjects/Bootloader
https://inertialsense.com
https://github.com/inertialsense/inertial-sense-sdk/blob/main/ExampleProjects/Bootloader/ISBootloaderExample.cpp
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/data_sets.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISBootloaderBase.cpp
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISBootloaderBase.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/ISComm.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPort.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPort.h
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPortPlatform.c
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/serialPortPlatform.h

STEP 4: RUN BOOTLOADER

Compile & Run (Linux/Mac)

Create build directory

Run cmake from within build directory

Compile using make

If necessary, add current user to the "dialout" group in order to read and write to the USB serial communication ports:

Run executable

Compile & Run (Windows Powershell)

*Note - Install CMake for Windows natively, or install the CMake for Windows extension for Visual Studio

Create build directory

Run cmake from within build directory

Compile using make

Run executable

Summary

This section has covered the basic functionality you need to set up and communicate with Inertial Sense products. If this doesn't

cover everything you need, feel free to reach out to us on the Inertial Sense SDK GitHub repository, and we will be happy to help.

 if (bootloadFileEx(¶m)==0)

 {

 printf("Bootloader success on port %s with file %s\n", serialPort.port, param.fileName);

 return 0;

 }

 else

 {

 printf("Bootloader failed! Error: %s\n", errorBuffer);

 return -1;

 }

1.

cd InertialSenseSDK/ExampleProjects/Bootloader

mkdir build

2.

cd build

cmake ..

3.

make

4.

sudo usermod -a -G dialout $USER

sudo usermod -a -G plugdev $USER

(reboot computer)

5.

./ISBootloaderExample /dev/ttyUSB0 IS_uINS-3.hex bootloader-SAMx70.bin

1.

cd InertialSenseSDK/ExampleProjects/IS_firmwareUpdate_v2

mkdir build

2.

cd build

cmake ..

3.

cmake --build .

4.

C:\InertialSenseSDK\ExampleProjects\IS_firmwareUpdate_v2\build\Release\ISBootloaderExample.exe COM3 IS_uINS-3.hex bootloader-SAMx70.bin

11.2.4 Firmware Update (Bootloader) Example Project

- 289/330 - ©2022

https://inertialsense.com
https://github.com/inertialsense/InertialSenseSDK

11.2.5 C++ API - Inertial Sense Class and CLTool Example Project

The InertialSense C++ class, defined in InertialSense.h/.cpp, provides all SDK capabilities including serial communications, data

logging to file, and embedded firmware update for InertialSense products.

CLTool Example

The Command Line Tool (CLTool) is an open source project designed to illustrate InertialSense C++ class implementation. The

CLTool project can be compiled on most operating systems using cmake and gcc and can be used to communicate, log data, and

update firmware for Inertial Sense products. A Visual Studio project for Windows is also included. See Using CLTool for details

on compiling and running the CLTool.

IMPLEMENTATION KEYWORDS

The following keywords are found in the CLTool soure code identify the steps for InertialSense class implementation.

Serial Communications

STEP 1: INSTANTIATE INERTIALSENSE CLASS

Include the InertialSense header file. Create InertialSense object.

STEP 2: OPEN SERIAL PORT

Open the serial by specifying the com port number, buadrate, and and The serial port used for communications

STEP 3: ENABLE DATA BROADCASTING

The following enables data broadcasting from the IMX at a specified data rate or period in milliseconds.

STEP 4: READ DATA

Call the Update() method at regular intervals to send and receive data.

STEP 5: HANDLE RECEIVED DATA

New data is available in the data callback function.

/* SDK Implementation Keywords:

 * [C++ COMM INSTRUCTION] - C++ binding API, InertialSense class with binary

 * communication protocol and serial port support for Linux and Windows.

 * [LOGGER INSTRUCTION] - Data logger.

 * [BOOTLOADER INSTRUCTION] - Firmware update feature.

 */

#include "InertialSense.h"

// [C++ COMM INSTRUCTION] 1.) Create InertialSense object, passing in data callback function pointer.

InertialSense inertialSenseInterface(cltool_dataCallback);

if (!inertialSenseInterface.Open(g_commandLineOptions.comPort.c_str(),

 g_commandLineOptions.baudRate,

 g_commandLineOptions.disableBroadcastsOnClose))

{

 cout << "Failed to open serial port at " << g_commandLineOptions.comPort.c_str() << endl;

 return -1; // Failed to open serial port

}

cltool_setupCommunications(inertialSenseInterface)

// Main loop. Could be in separate thread if desired.

while (!g_inertialSenseDisplay.ControlCWasPressed())

{

 if (!inertialSenseInterface.Update())

 {

 // device disconnected, exit

 break;

 }

}

11.2.5 C++ API - Inertial Sense Class and CLTool Example Project

- 290/330 - ©2022

https://github.com/inertialsense/inertial-sense-sdk/blob/main/src/InertialSense.cpp
https://inertialsense.com
https://github.com/inertialsense/inertial-sense-sdk/tree/main/cltool

STEP 6: CLOSE INTERFACE

Close the interface when your application finishes.

Data Logging

STEP 1: CONFIGURE AND START LOGGING

Compile & Run (Linux/Mac)

Create build directory

Run cmake from within build directory

Compile using make

If necessary, add current user to the "dialout" group in order to read and write to the USB serial communication ports:

Run executable

static void cltool_dataCallback(InertialSense* i, p_data_t* data, int pHandle)

{

 // Print data to terminal

 g_inertialSenseDisplay.ProcessData(data);

 // uDatasets is a union of all datasets that we can receive. See data_sets.h for a full list of all available datasets.

 uDatasets d = {};

 copyDataPToStructP(&d, data, sizeof(uDatasets));

 // Example of how to access dataset fields.

 switch (data->hdr.id)

 {

 case DID_INS_2:

 d.ins2.qn2b; // quaternion attitude

 d.ins2.uvw; // body velocities

 d.ins2.lla; // latitude, longitude, altitude

 break;

 case DID_INS_1:

 d.ins1.theta; // euler attitude

 d.ins1.lla; // latitude, longitude, altitude

 break;

 case DID_IMU: d.dualImu; break;

 case DID_PIMU: d.dThetaVel; break;

 case DID_GPS1_POS: d.gpsPos; break;

 case DID_MAGNETOMETER: d.mag; break;

 case DID_BAROMETER: d.baro; break;

 case DID_SYS_SENSORS: d.sysSensors; break;

 }

}

// Close cleanly to ensure serial port and logging are shutdown properly. (optional)

inertialSenseInterface.Close();

// [LOGGER INSTRUCTION] Setup and start data logger

if (!cltool_setupLogger(inertialSenseInterface))

{

 cout << "Failed to setup logger!" << endl;

 return -1;

}

1.

cd cltool

mkdir build

2.

cd build

cmake ..

3.

make

4.

sudo usermod -a -G dialout $USER

sudo usermod -a -G plugdev $USER

(reboot computer)

5.

./cltool

11.2.5 C++ API - Inertial Sense Class and CLTool Example Project

- 291/330 - ©2022

Compile & Run (Windows Powershell)

*Note - Install CMake for Windows natively, or install the CMake for Windows extension for Visual Studio

Create build directory

Run cmake from within build directory

Compile using make

Run executable

Summary

This section has covered the basic functionality you need to set up and communicate with Inertial Sense products. If this doesn't

cover everything you need, feel free to reach out to us on the Inertial Sense SDK GitHub repository, and we will be happy to help.

1.

cd InertialSenseSDK/cltool

mkdir build

2.

cd build

cmake ..

3.

cmake --build .

4.

C:\InertialSenseSDK\cltool\build\Release\cltool.exe

11.2.5 C++ API - Inertial Sense Class and CLTool Example Project

- 292/330 - ©2022

https://inertialsense.com
https://github.com/inertialsense/InertialSenseSDK

11.2.6 Data Logging Example Project

This ISLoggerExample project demonstrates data logging with the InertialSense products (IMX, uAHRS, and uIMU) using the

Inertial Sense SDK.

Files

Project Files

ISLoggerExample.cpp

SDK Files

SDK

Implementation

STEP 1: ADD INCLUDES

STEP 2: INSTANTIATE INERTIALSENSE CLASS

STEP 3: ENABLE DATA LOGGER

STEP 4: ENABLE DATA BROADCASTING

By default, data logs will be stored in the "IS_logs" directory in the current directory.

Compile & Run (Linux/Mac)

Create build directory

Run cmake from within build directory

Compile using make

If necessary, add current user to the "dialout" group in order to read and write to the USB serial communication ports:

•

•

// Change these include paths to the correct paths for your project

#include "../../src/InertialSense.h"

 // InertialSense class wraps communications and logging in a convenient, easy to use class

 InertialSense inertialSense(dataCallback);

 if (!inertialSense.Open(argv[1]))

 {

 std::cout << "Failed to open com port at " << argv[1] << std::endl;

 }

 // get log type from command line

 cISLogger::sSaveOptions options;

 options.logType = (argc < 3 ? cISLogger::LOGTYPE_DAT : cISLogger::ParseLogType(argv[2]));

 inertialSense.EnableLogger(true, "", options);

 // broadcast the standard set of post processing messages (ins, imu, etc.)

 inertialSense.BroadcastBinaryDataRmcPreset();

 // instead of the rmc preset (real-time message controller) you can request individual messages...

 // inertialSense.BroadcastBinaryData(DID_IMU, 6); // (startupNavDtMs default)

build/IS_logs/LOG_SN30664_20180323_112822_0001.dat

1.

cd InertialSenseSDK/ExampleProjects/Logger

mkdir build

2.

cd build

cmake ..

3.

make

4.

11.2.6 Data Logging Example Project

- 293/330 - ©2022

https://github.com/inertialsense/inertial-sense-sdk/tree/main/ExampleProjects/InertialSense_logger
https://inertialsense.com
https://github.com/inertialsense/inertial-sense-sdk/blob/main/ExampleProjects/InertialSense_logger/ISLoggerExample.cpp
https://github.com/inertialsense/inertial-sense-sdk/blob/main/src

Run executable

Compile & Run (Windows Powershell)

*Note - Install CMake for Windows natively, or install the CMake for Windows extension for Visual Studio

Create build directory

Run cmake from within build directory

Compile using make

Run executable

Summary

This section has covered the basic functionality you need to set up and communicate with Inertial Sense products. If this doesn't

cover everything you need, feel free to reach out to us on the Inertial Sense SDK GitHub repository, and we will be happy to help.

sudo usermod -a -G dialout $USER

sudo usermod -a -G plugdev $USER

(reboot computer)

5.

./ISLoggerExample /dev/ttyUSB0

1.

cd InertialSenseSDK/ExampleProjects/Logger

mkdir build

2.

cd build

cmake ..

3.

cmake --build .

4.

C:\InertialSenseSDK\ExampleProjects\Logger\build\Release\ISLoggerExample.exe COM3

11.2.6 Data Logging Example Project

- 294/330 - ©2022

https://inertialsense.com
https://github.com/inertialsense/InertialSenseSDK

12. Data Logging/Plotting

12.1 Data Logging/Plotting

Inertial Sense provides data a logging capability in the EvalTool, CLTool, and SDK (C++) that can record data in binary, comma

separated (.CSV), and KML file formats. This logging capability is useful for storing, replaying, and analyzing data.

12.1.1 Data Log Types

Comma Seperated Values (*.csv)

The comma separated value (.csv) file format can be imported into many software packages, including Excel, Matlab, and Python.

KML (*.kml)

KML is a file format used to display geographic data in an Earth browser such as Google Earth.

Binary Data Log (*.raw and *.dat)

12.1.2 Binary Data Log Format

This section outlines the Inertial Sense binary data log types known as raw data and serial data (.raw and .dat file extensions).

The .dat data log file type are composed of several data containers know as chunks. Each chunk contains a header, sub-header,

and data.

File

The data log file name has the format LOG_SNXXXXX_YYYYMMDD_HHMMSS_CNT.dat which contains the device serial number,

date, time, and log file count. The serial data log file formats is .dat . This log consist of files containing series of data Chunks.

Raw Logger (*.raw) Serial Logger (*.dat)

Description Data stored in the same byte for byte form as it

appears over a serial port, without parsing and

removing packet header/footer.

Stores data to file in the same serial order it

was passed into the logger. This is the default

logger used in the CLTool and EvalTool.

Advantages Allows logging of all data/packet formats. Preserves all

data in the original form as communicated over serial

port. Can be logged by writting serial port data to file,

no parsing needed.

Optimized for real-time data logging.

Source File DeviceLogRaw.h / .cpp DeviceLogSerial.h / .cpp

File

extension

.raw .dat

12. Data Logging/Plotting

- 295/330 - ©2022

Standard data types are stored in the log files and are defined as:

Chunk

The data log file is composed of Chunks. A Chunk is a data container that provides an efficient method for organizing, handling,

and parsing data in a file. A Chunk starts with a header which has a unique identifiable marker and ends with the data to be

stored.

Chunk Header

The header, found at the start of each Chunk, is as follows:

The C structure implementation of the Chunk header is:

Chunk Data

The Chunk data is defined for the .dat file types.

Data Set Header

The Data set header is used for the .dat file types.

U32 unsigned int

U16 unsigned short

S8 char

U8 unsigned char

//!< Chunk Header

#pragma pack(push,1)

struct sChunkHeader

{

uint32_t marker; //!< Chunk marker (0xFC05EA32)

uint16_t version; //!< Chunk Version

uint16_t classification; //!< Chunk classification

char name[4]; //!< Chunk name

char invName[4]; //!< Bitwise inverse of chunk name

uint32_t dataSize; //!< Chunk data length in bytes

uint32_t invDataSize; //!< Bitwise inverse of chunk data length

uint32_t grpNum; //!< Chunk Group Number: 0 = serial data...

uint32_t devSerialNum; //!< Device serial number

uint32_t pHandle; //!< Device port handle

uint32_t reserved; //!< Unused

};

#pragma pack(pop)

12.1.2 Binary Data Log Format

- 296/330 - ©2022

12.1.2 Binary Data Log Format

- 297/330 - ©2022

12.2 Logging

The SDK logging interface is defined in SDK/src/ISLogger.h. Data logs can be converted between file formats using the Inertial

Sense data logger. The logging interface is used in the Inertial Sense software described below.

12.2.1 Logging using Inertial Sense software

EvalTool

Go to “Data Logs” tab in EvalTool.

Select the “Format” file type from the drop-down menu.

Select the data to record within the Data Streams section of the "Data Logs" tab:

Manual Selection – Allows the user to select the specific datasets to stream and their update rates by setting the checkbox and

period multiple in Manual Selection table.

INS – Log INS output (attitude, velocity, position) at 100 Hz by selecting "INS" from the RMC Presets dropdown.

Post Process – Used for beta testing and internal testing. Includes IMU, GPS, INS and other messages. Log by selecting "PPD"

from the RMC Presets dropdown.

Press “Enable” to begin logging data.

Press “Disable” to stop logging data.

The “Open Folder” button opens the File Explorer location to the data logs, i.e. C:\Users\[username]\Documents\Inertial_Sense\logs .

To change the root log folder in the Eval Tool, edit Documents/Inertial Sense/settings.json , and add or change the logger key:

"Directory": "FOLDER_FOR_LOGS".

CLTool

The CLTool, provided in the SDK, is a command line application that can record post process data. The CLTool help menu is

displayed using the option -h . See the CLTool section for more information on using the CLTool.

12.2.2 Post Process Data (PPD) Logging Instructions

Post process data (PPD) logs include both the input to and output from the navigation filter. The data is used for analyzing,

troubleshooting, and improving system performance. PPD logs can be recorded using the EvalTool, CLTool, or SDK.

PPD RMC bits Preset

PPD logs are created by enabling PPD data streaming by setting the RMC bits to RMC_PRESET_IMX_PPD and logging this stream to a

.dat binary file. RMC_PRESET_IMX_PPD is defined in data_sets.h.

Logging PPD in EvalTool

The following steps outline how to record post process data in the EvalTool

Go to the "Data Logs" tab in the EvalTool.

Press the "Data Log: PPD Log" button to start logging.

Toggle the "Data Log: Disable" button to stop logging.

The "Open Folder" button will open the directory where the data logs are stored.

Logging PPD in CLTool

Streaming and logging a PPD log using the CLTool is done using the -presetPPD -lon options:

1.

2.

3.

a.

b.

c.

4.

5.

6.

7.

1.

2.

3.

4.

12.2 Logging

- 298/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/blob/main/src/ISLogger.h
https://github.com/inertialsense/InertialSenseSDK/blob/main/src/data_sets.h#L1153-L1169

See the CLTool section for more information on using the CLTool.

cltool -c /dev/ttyS2 -presetPPD -lon

12.2.2 Post Process Data (PPD) Logging Instructions

- 299/330 - ©2022

12.3 Plotting

12.3.1 Log Inspector

Log Inspector is a convenient way to quickly plot Inertial Sense PPD logs that of of the .dat format. The source code is in the SDK

and can be modified and expanded.

12.3.2 CLTool

The CLTool can be used to load and replay .dat log files. The source code for the CLTool is located in the SDK and can be

expanded by a user to analyze log data.

-rp PATH replay data log from specified path

-rs=SPEED replay data log at x SPEED

The following example replays data at 1x speed from the specified directory.

The following example will replay data as fast a possible in quiet mode (without printing to the screen). This is useful to quickly

reprocess the data.

12.3.3 3
rd

 Party Software

The various file types described in the overview section can be analyzed using various software packages. Matlab, Python, and

Excel are popular choices and are well suited for Inertial Sense data logs.

•

•

cltool -rp IS_logs/20180801_222310

cltool -rp IS_logs/20180801_222310 -rs=0 -q

12.3 Plotting

- 300/330 - ©2022

13. Reference

13.1 IMX-5.0 Bootloader

The IMX-5.0 bootloader is embedded firmware stored on the IMX and is used to update the IMX application firmware.

13.1.1 Application Firmware Update

The following are conditions for the IMX firmware update.

Bootloader Enable - At start of the firmware update process, the IMX is sent a "bootloader enable" command to reboot the

processor into bootloader mode. The IMX will not reboot into application mode until a valid firmware upload has completed.

Handshake Sequence - A handshake sequence consisting of five consecutive sync characters (U) spaced 10 ms (minimum 5

ms) apart is sent to the IMX to initiate a given port and close all other ports to prevent interference.

Application Enable - The IMX reboots into application mode only after a valid firmware upload has completed.

13.1.2 Bootloader Update

Updating the bootloader firmware is occasionally necessary when new functionality is required. The bootloader is checked and

updated at the same time as loading new firmware. The following steps outline how to update the IMX bootloader and firmware.

Ensure IMX Firmware is Running - (This step is not necessary if the IMX firmware is running and the EvalTool is

communicating with the IMX). If the bootloader is running but the firmware is not, version information will not appear in the

EvalTool. The LED will also be a fading cyan.

Select Baud Rate - Select a slower baud rate (i.e. 115,200 or 230,400) for systems with known baud rate limits.

Update the Bootloader and Firmware - Use the EvalTool "Update Firmware" button in the Settings tab to upload the latest

bootloader and the latest firmware. The bootloader can only be updated using serial0 or the native USB ports.

13.1.3 Known Issues

The following are known issues in the IMX-5.0 bootloader.

UART 50s Disable - (Version v5g and prior) All UARTs get disabled if no handshake sequence is received within 50 seconds of

the bootloader start. The USB port does not automatically close due to no handshake reception.

•

•

•

1.

2.

3.

•

13. Reference

- 301/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/releases/tag/bootloader

13.2 Coordinate Frames

In this manual, coordinate frame systems are simply referred to as frames. This page is to assist the developer in choosing and

implementing the appropriate coordinate frames for their respective application. It should be noted that the following frames are

in relation to the IMX itself.

13.2.1 Coordinate Frame Relationship

The relationship between the Hardware Frame, Sensor Frame, and INS Output Frame are as follows.

NOTE: The Hardware Frame and Sensor Frame are equivalent when the sensor rotation in DID_FLASH_CONFIG.sensorConfig is

zero. The Sensor Frame and INS output Frame are equivalent when the DID_FLASH_CONFIG.insRotation and

DID_FLASH_CONFIG.insOffset are zero.

13.2.2 Hardware Frame

The Hardware Frame is labeled "X" and "Y" on the hardware indicating the direction of the sensing elements in the IMX.

13.2 Coordinate Frames

- 302/330 - ©2022

The IMX follows the right right rule for XYZ axis relative direction and angular rotation.

13.2.2 Hardware Frame

- 303/330 - ©2022

13.2.3 Sensor Frame

The IMU and magnetometer data (i.e. messages DID_IMU and DID_MAGNETOMETER) are in the Sensor Frame. The Hardware

Frame is rotated into the Sensor Frame in multiples of 90° using the SENSOR_CFG_SENSOR_ROTATION_MASK bits of the

DID_FLASH_CONFIG.sensorConfig as defined in enum eSensorConfig .

13.2.4 INS Output Frame

The INS output data (DID_INS_1, DID_INS_2, DID_INS_3) is in the INS Output Frame. Translation from Sensor Frame to INS

Output Frame is defined as:

Sensor Frame → Intermediate Output Frame by rotation of DID_FLASH_CONFIG.insRotation euler angles (in order of heading, pitch,

roll angle) In radians.

Intermediate Output Frame → INS Output Frame: Offset by DID_FLASH_CONFIG.insOffset in meters.

If DID_FLASH_CONFIG.insRotation and DID_FLASH_CONFIG.insOffset are zero, the Sensor Frame and the INS Output Frame are the

same.

13.2.5 North-East-Down (NED) Frame

Position estimates can be output in the North-East-Down (NED) coordinate frame defined as follows:

* Right-handed, Cartesian, non-inertial, geodetic frame with origin located at the surface of Earth (WGS84 ellipsoid). * Positive X-

axis points towards North, tangent to WGS84 ellipsoid. * Positive Y-axis points towards East, tangent to WGS84 ellipsoid. *

Positive Z-axis points down into the ground completing the right-handed system.

13.2.6 Earth-Centered Earth-Fixed (ECEF) Frame

The Earth-Centered Earth-Fixed (ECEF) frame is defined as follows:

* Right-handed, Cartesian, non-inertial frame with origin located at the center of Earth. * Fixed to and rotates with Earth. *

Positive X-axis aligns with the WGS84 X-axis, which aligns with the International Earth Rotation and Reference Systems Service

(IERS) Prime Meridian. * Positive Z-axis aligns with the WGS84 Z-axis, which aligns with the IERS Reference Pole (IRP) that

points towards the North Pole. * Positive Y-axis aligns with the WGS84 Y-axis, completing the right-handed system.

1.

2.

13.2.3 Sensor Frame

- 304/330 - ©2022

13.2.7 Coordinate Frames Transformation Functions

This section is intended to be an example of how to rotate between frames using utility functions defined in the

InertialSenseSDK.

Body frame to NED frame

The following example converts body velocity DID_INS_2.uvw to NED velocity vel_ned .

The following computes ground track heading based on DID_INS_2.uvw body velocity in the local tagent plane.

This following example removes gravity from the IMU measured acceleration.

#include "SDK/src/ISPose.h"

quatRot(vel_ned, DID_INS_2.qn2b, DID_INS_2.uvw);

#include "SDK/src/ISPose.h"

quatRot(vel_ned, DID_INS_2.qn2b, DID_INS_2.uvw);

ground_track_heading = atan2f(vel_ned[1], vel_ned[0]);

#include "SDK/src/ISPose.h"

Vector gravityNED = { 0, 0, -9.80665 }; // m/s^2

Vector gravityBody;

Vector accMinusGravity;

// Rotate gravity into body frame

quatConjRot(gravityBody, DID_INS_2.qn2b, gravityNED);

// Subtract gravity from IMU acceleration output

sub_Vec3_Vec3(accMinusGravity, DID_IMU.I[0].acc, gravityBody);

13.2.7 Coordinate Frames Transformation Functions

- 305/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK

ECEF frame to NED frame

This example converts ECEF velocity vel_ecef to NED velocity vel_ned .

#include "SDC/src/ISPose.h"

quat_ecef2ned(lla[0], lla[1], qe2n);

quatConj(qn2e, qe2n);

quatRot(vel_ned, qn2e, vel_ecef);

13.2.7 Coordinate Frames Transformation Functions

- 306/330 - ©2022

13.3 Definitions

13.3.1 GPS Time To Fix

The time it takes for the GPS receiver to get “fix” or produce a navigation solution from the visible satellites is affected by the

following GPS startup conditions:

Cold start - In cold start mode, the receiver has no information from the last position (e.g. time, velocity, frequency etc.) at

startup. Therefore, the receiver must search the full time and frequency space, and all possible satellite numbers. If a satellite

signal is found, it is tracked to decode the ephemeris (18-36 seconds under strong signal conditions), whereas the other

channels continue to search satellites. Once there are enough satellites with valid ephemeris, the receiver can calculate

position and velocity data. Other GNSS receiver manufacturers call this startup mode Factory Startup.

Warm start - In warm start mode, the receiver has approximate information for time, position, and coarse satellite position

data (Almanac). In this mode, after power-up, the receiver normally needs to download ephemeris before it can calculate

position and velocity data. As the ephemeris data usually is outdated after 4 hours, the receiver will typically start with a Warm

start if it has been powered down for more than 4 hours.

Hot start - In hot start mode, the receiver was powered down only for a short time (4 hours or less), so that its ephemeris is

still valid. Since the receiver doesn't need to download ephemeris again, this is the fastest startup method.

Battery backed-up power supplied to the IMX preserves the GPS time, position, and coarse satellite position (almanac) while off.

GPS almanac data is typically valid for several weeks while the GPS is off.

13.3.2 Preintegrated IMU

Also known as Coning and Sculling Integrals, Δ Theta Δ Velocity, or Integrated IMU. For clarification, we will use the name

"Preintegrated IMU" or "PIMU" throughout the User Manual. They are integrated by the IMU at IMU update rates (1KHz). These

integrals are reset each time they are output. Preintegrated IMU data acts as a form of compression, adding the benefit of higher

integration rates for slower output data rates, preserving the IMU data without adding filter delay. It is most effective for systems

that have higher dynamics and lower communications data rates. The IMX-5 uses Bortz for angular rates (which yield rotation

from the previous pose) and full dual gyro and accelerometer integration for change in body velocities from the previous pose.

The PIMU is NOT integrated from each axis separately.

13.3.3 IMU Bias Repeatability (Turn-on to Turn-on Bias)

The initial bias will be different for each power up of the IMU due to signal processing initial conditions and physical properties.

A more repeatable bias allows for better tuning of INS parameters and faster estimate of the bias, whereas a more variable initial

turn-on bias causes more difficult and longer INS convergence startup time.

13.3.4 IMU Bias Stability (In-Run Bias)

Describes the amount of bias change during any one run-time following poweron. This change is caused by temperature, time,

and mechanical stress. The INS navigation filter estimates the IMU biases in order to improve the state estimate. The IMU bias

stability directly impacts the accuracy of the INS output.

13.3.5 Random Walk

The IMU sensors measure a signal as well as noise or error, described as a stochastic process. During IMU integration in the

INS, sensor noise is accumulated and produces a random walk or drift on the final solution. Random walk has a direct effect on

the accuracy of the INS output.

13.3.6 Sensor Orthogonality (Cross-Axis Alignment Error)

The three axis gyro and accelerometer sensors found in an IMU have measurement axes at 90 degrees from each other,

maximizing the observability of the system. In practice, these sensing axes in a three axis sensor are not perfectly at 90 degrees

•

•

•

13.3 Definitions

- 307/330 - ©2022

of each other, or misaligned slightly due to manufacturing imperfection. This misalignment results in integration error in the INS

and impacts accuracy. To correct for cross-axis alignment error, the IMU is calibrated during manufacturing in a controlled

motion environment.

13.3.6 Sensor Orthogonality (Cross-Axis Alignment Error)

- 308/330 - ©2022

13.4 IMU Specifications

13.4.1 IMU Noise Specification Conversion to Standard Deviation

The following calculations convert the noise specifications from the IMX-5 inertial measurement unit (IMU) datasheet into usable

standard deviation values for simulating sensor noise at a sampling rate of 100 Hz. IMUs typically provide specifications for

gyroscope and accelerometer noise in terms of "Angular Random Walk" (ARW) and "Velocity Random Walk" (VRW), expressed

per \sqrt{\text{hours}}. These values represent the rate at which random walk (drift) accumulates over time. To model this noise

accurately in simulations, we need to translate the datasheet specifications into standard deviations that correspond to the

chosen sampling rate (100 Hz, or 0.01 seconds per sample). This involves converting the ARW and VRW values from per

\sqrt{\text{hour}} to per \sqrt{\text{second}} and then adjusting them based on the sampling interval, yielding noise

characteristics that realistically represent the IMU's behavior in a simulated environment.

Given IMU specifications for the IMX-5:

Gyro Angular Random Walk (ARW): 0.16 \, ^{\circ} / \sqrt{\text{hr}}

Accelerometer Velocity Random Walk (VRW): 0.02 \, \text{m/s} / \sqrt{\text{hr}}

Sampling Rate: 100 Hz (which corresponds to a time interval, \Delta t, of 0.01 seconds)

Time Conversion Factor

Since the random walk values are given per \sqrt{\text{hr}}, we need to convert from hours to seconds. 1 hour is 3600 seconds,

so: To convert the noise specifications from per \sqrt{\text{hr}} to per \sqrt{\text{s}}, divide by 60.

1. Gyroscope Noise (° and °/s)

Convert the Gyro Angular Random Walk (ARW) to per \sqrt{\text{s}}:

Now, to get the angle drift at a 100 Hz sampling rate, multiply by the square root of the time interval: So, the angle drift

standard deviation at 100 Hz is approximately 0.000267 °.

To get the angular rate noise at a 100 Hz sampling rate, divide ARW by the square root of the time interval:

2. Accelerometer Noise (m/s and m/s²)

VELOCITY DRIFT STANDARD DEVIATION (M/S)

Convert VRW from per \sqrt{\text{hr}} to per \sqrt{\text{s}}:

Now, multiply by the square root of the time interval to get the standard deviation at 100 Hz in terms of velocity: So, the velocity

drift standard deviation at 100 Hz is approximately 0.0000333 m/s.

ACCELEROMETER STANDARD DEVIATION IN TERMS OF ACCELERATION (M/S²)

To express the accelerometer noise as standard deviation in terms of acceleration, divide the VRW (converted per

\sqrt{\text{s}}) by the square root of the time interval: Thus, the accelerometer noise standard deviation in terms of

acceleration at 100 Hz is approximately 0.00333 m/s².

Summary of Results:

Angle Drift Standard Deviation at 100 Hz: 0.000267 ° (denoted as \sigma_{\text{angle}})

Gyro Angular Rate Noise Standard Deviation at 100 Hz: 0.0267 °/s (denoted as \sigma_{\text{gyro}})

Velocity Drift Standard Deviation at 100 Hz: 0.0000333 m/s

Acceleration Noise Standard Deviation at 100 Hz: 0.00333 m/s²

These values represent the Gaussian noise standard deviations for each sensor at 100 Hz sampling rate.

•

•

•

•

•

•

•

13.4 IMU Specifications

- 309/330 - ©2022

13.5 Interference Considerations

Electrical interference or noise can be coupled into the Inertial Sense module in the form of electromagnetic interference (EMI)

through the air or electrically conducted through wiring. Sources for interference include:

EMI at the GPS antenna.

EMI at the IMX module.

EMI conducted through the power supply or I/O lines.

Common sources for noise and interference are digital lines, USB 3.x, noisy power supplies, etc.

13.5.1 Detecting Interference

To detect if interference is being coupled into the Inertial Sense sensor module, it can be compared with a stock EVB demo unit

to compare noise figures. This is done by using the following steps. If both steps pass, there is no noise being coupled into the

module. Optionally connect multiple sensor modules can be connected to the EvalTool in parallel to compare noise.

Evaluate the IMU sensor - Make sure the unit is stationary (on a table or non-moving surface) and not seeing any vibrations.

Watch the standard deviation columns labeled "σ" in the Sensors tab of the EvalTool. This shows the noise level over the past 5

seconds, which means the device needs to be completely stable for 5 seconds to be accurate. Compare this figure between the

integrated sensor module and EVB demo unit.

Evaluate GPS sensitivity – In clear view of the sky, monitor the satellite signal strength through the DID_GPS_NAV.cnoMax and

DID_GPS_NAV.cnoMean fields in the EvalTool "Data Sets" tab or in the EvalTool "GPS" tab. See that the strongest (largest) CNO values

are roughly the same between the integrated sensor module and the EVB demo unit.

13.5.2 Interference Mitigation

The best solution is to stop the EMI (emitted) or conducted noise at its source. If it is not possible to completely eliminate the

source, the following methods should be considered depending on the cause of interference:

GPS antenna location - Position the GPS antenna at the top of the vehicle, clear of obstructions and away from noise sources

such as motors, processors, USB cables, digital devices, etc. USB 3.x typically generates quite a bit of EMI and interferes with

the GPS. Added shielding and/or signal inline USB filters can be added USB 3.x to reduce EMI and mitigate GPS interference.

Symptoms of GPS interference are poor GPS CNO signal strength, long times to lock, slip out of lock, etc.

GPS antenna ground plane - Adding a 2"-3" diameter metallic ground plane below the GPS antenna will improve CNO noise

ratio and improve sensitivity. This can help in noisy environments. You can use any scrap metal or PCB to test the concept by

simply placing it below the GPS antenna (no electrical grounding required). The ground plane can have holes to reduce the

weight and aerodynamic effects.

•

•

•

1.

2.

•

•

13.5 Interference Considerations

- 310/330 - ©2022

https://www.amazon.com/AudioQuest-Jitterbug-USB-Filter/dp/B00YTA78FW/ref=sr_1_5?ie=UTF8&qid=1525737258&sr=8-5&keywords=usb+filter

Shielding around the Inertial Sense module - This can further prevent EMI from being absorbed by potentially GPS

sensitive circuitry on the module.

Digital signals - Making sure best practices for electrical current return paths for both common mode and differential mode

signals can be key for this. Customers have seen GPS interference caused by USB 3.x and have have resolved the issues using

shielding and inline USB filters.

Power supply filtering - This may be necessary on systems with significant digital noise. LC filters or similar filters can be

added inline between the power supply and the IMX supply input (Vcc). Common switching mode/buck voltage regulators

should be fine for use with the IMX module and not require additional filtering.

Please contact us at support@inertialsense.com if further support is needed.

13.5.3 Magnetic Interference

Magnetic interference may impact IMX magnetometer performance if surrounded by steel or ferrous material or near motors,

motor drivers, or other electronics that cause EMI. This interference can be observed in the magnetometer output,

magnetometer status, and INS heading. Make sure all components are fixed in location during this test. While powering and

actuating the various interference sources, observe the following:

Magnetometer Output should remain constant and not deviate. (EvalTool Sensors tab)

Magnetometer Status should remain good and not indicate interference. (EvalTool INS tab, "Mag used" green = good,

yellow = interference)

INS Heading (yaw) estimate should not drift or change direction. (EvalTool INS tab, "Yaw")

If any of these items are affected during the test, the system may result in incorrect magnetometer and heading values.

13.5.4 Mechanical Vibration

The system accuracy may degrade in the presence of mechanical vibrations that exceed 3 g of acceleration. Empirical data shows

degradation at approximately 100 - 150 Hz. Adding vibration isolation to the mount may be necessary to reduce the vibrations

seen by the product and to improve accuracy.

13.5.5 Temperature Sensitivity

The system is designed to compensate for the effects of temperature drift, which can be found in typical operation. However,

rapid hardware temperature changes can result in degraded accuracy of the IMU calibration, GPS position, and INS estimate.

Rapid temperature change can be caused by direct exposure to wind, sun, and other elements.

•

•

•

•

•

•

13.5.3 Magnetic Interference

- 311/330 - ©2022

https://www.amazon.com/AudioQuest-Jitterbug-USB-Filter/dp/B00YTA78FW/ref=sr_1_5?ie=UTF8&qid=1525737258&sr=8-5&keywords=usb+filter
mailto:support@inertialsense.com

13.6 Magnetometer

The magnetometer is used to estimate heading when the system is in any of the following conditions:

is in AHRS mode

has no GPS fix

has GPS fix and constant velocity (non-accelerating motion)

To have accurate heading under these conditions, the magnetometer must be calibrated. The system allows for two types of

modes for recalibration, external initiated and automatically initiated re-calibration. Regardless of the recalibration mode, a

slower online background calibration runs that continuously improves the magnetometer calibration to handle local magnetic

environment changes. All magnetometer calibration is stored in flash memory and available on bootup.

13.6.1 Disable Magnetometer Updates

Magnetometer fusion into the INS and AHRS filter can be disabled by setting bit SYS_CFG_BITS_DISABLE_MAGNETOMETER_FUSION

(0x00001000) of DID_FLASH_CONFIG.sysCfgBits .

13.6.2 Magnetometer Recalibration

Occasionally the magnetometer will require a complete recalibration, replacing the old calibration with an entirely new

calibration. This is accomplished either through external or automatic initiated recalibration. Use of the different modes is

generally governed by the particular use case for the end customer and is intended to allow for the most flexibility in an

integrated product design.

External Recalibration

External magnetometer recalibration allows the most flexibility in determining when an end user will need to recalibrate the

system. This control over the timing of the recalibration is critical for many use cases and allows product designers to implement

their desired workflows for customers. Further there are use cases where automatic recalibration is not possible because the

quality of the magnetometer calibration is not observable. Such use cases would include AHRS operation, extended periods

without motion or no GNSS fix. External magnetometer recalibration, as the name suggests is triggered by an external command

from the application managing the IMX hardware. The IMX provides a set of status messages indicating the quality of the

magnetometer calibration and leaves the timing and implementation of a recalibration up to the product designer. Specifically,

INS_STATUS_MAG_INTERFERENCE_OR_BAD_CAL is an indication of the quality of the magnetometer calibration (see system status flags for

details).

During the calibration process, the system should be clear of steel, iron, magnets, or other ferrous materials (i.e. steel desks,

tables, building structures). The IMX should be attached to the system in which it is operating and rotated together during the

calibration process. The following is the

Force magnetometer recalibration procedure:

Set DID_MAG_CAL.recalCmd to either: * MAG_CAL_STATE_MULTI_AXIS (0) for Multi-Axis which is more accurate and requires 360⁰ rotation

about two different axes. * MAG_CAL_STATE_SINGLE_AXIS (1) for Single-Axis which is less accurate and requires 360⁰ rotation about

one axis.

Rotate the system accordingly.

Recalibration completion is indicated by either:

INS_STATUS_MAG_RECALIBRATING bit of the insStatus word set to zero. The insStatus word is found in standard INS output messages

(DID_INS_1 , DID_INS_2 , DID_INS_3 , and DID_INS_4).

DID_MAG_CAL.progress is 100.

1.

2.

3.

1.

2.

1.

2.

13.6 Magnetometer

- 312/330 - ©2022

Recalibration progress is indicated as a percentage (0-100%) is indicated can be observed from variable DID_MAG_CAL.progress .

The recalibration process can be canceled and the prior calibration restored anytime by setting DID_MAG_CAL.enMagRecal =

MAG_RECAL_MODE_ABORT (101).

The “Mag used” indicator in the EvalTool INS tab will be green when magnetometer data is being fused into the solution, black

when not being fused into the solution, and red during recalibrating.

Example code:

Automatic Recalibration

Automatic magnetometer recalibration is useful for systems where user intervention to start external calibration is not

convenient or practical. In this mode, the solution will determine that the system needs to be recalibrated and will attempt to do

so while in normal operation. In the period while the system is recalibrating, the uncalibrated magnetometer data is used to

prevent the INS heading from drifting but it does not provide heading measurements to the state estimator. This feature is

enabled by setting bit SYS_CFG_BITS_AUTO_MAG_RECAL (0x00000004) of DID_FLASH_CONFIG.sysCfgBits non-volatile word.

13.6.3 Magnetometer Continuous Calibration

To mitigate the need for recalibration (completely replace calibration data), continuous calibration improves the magnetometer

calibration slowly over time. Continuous calibration always runs in the background.

13.6.4 Magnetometer Calibration Settings

The magnetometer calibration algorithm can produce higher quality calibrations when data more data is collected across

multiple axes of rotation. However, there are use cases where data collection beyond a single axis is impractical if not impossible.

To address this issue there is a setting in the flash to configure the data requirement threshold for magnetometer calibration.

The available settings include:

Single Axis Calibration – This setting requires a full rotation in the yaw axis (relative to earth) to determine the calibration.

Additional data that is collected via motion on other axes is used but not required. Once a full rotation is completed the

calibration is calculated and the online continuous calibration is started.

Multi Axis Calibration – This setting requires data to be collected across at least two axes, where one is the yaw axis. This

calibration mode does not have any specific angular rotational requirements in any given axes, but it does require that data

has been collected across a sufficient angular span. There is an indicator (mag_cal_threshold_complete) in the

DID_SYS_PARAMS message that relates the total percent of the required threshold that has been collected. As more data is

collected this value will increment to 100% at which point the calibration will be calculated and the online continuous

calibration will continue to run

#include "com_manager.h"

// Set DID_MAG_CAL.enMagRecal = 0 for multi-axis recalibration

int32_t value = MAG_RECAL_MODE_MULTI_AXIS;

sendDataComManager(0, DID_MAG_CAL, &value, 4, offsetof(mag_cal_t, enMagRecal));

// Enable broadcast of DID_MAG_CAL.progress every 100ms to observe the percent complete

sendDataComManager(0, DID_MAG_CAL, 0, sizeof(mag_cal_t), 100);

// Enable automatic magnetometer calibration.

DID_FLASH_CONFIG.sysCfgBits |= SYS_CFG_BITS_AUTO_MAG_RECAL;

// Disable automatic magnetometer calibration.

DID_FLASH_CONFIG.sysCfgBits &= ~SYS_CFG_BITS_AUTO_MAG_RECAL;

•

•

/*! Magnetometer recalibration. 0 = multi-axis, 1 = single-axis */

SYS_CFG_BITS_MAG_RECAL_MODE_MASK = (int)0x00000700,

SYS_CFG_BITS_MAG_RECAL_MODE_OFFSET = 8,

13.6.3 Magnetometer Continuous Calibration

- 313/330 - ©2022

14. User Manual PDF

This document is provided to allow users to capture a snapshot of our current documentation. The PDF is an automatically

generated printout of the current online documents so there are known link and image sizing issues. We encourage

use the online documentation which is maintained for customer accessibility.

Download PDF

14. User Manual PDF

- 314/330 - ©2022

http://docs.inertialsense.com/user-manual/reference/user_manual_pdf/InertialSenseDocs.pdf

15. Frequently Asked Questions

15.1 What is a Tactical Grade IMU?

An Inertial Measurement Unit (IMU) is industry qualified as "Tactical Grade" when the In Run Bias Stability (IRBS) of the

gyroscopes is between 0.5 deg/hour and 5 deg/hour. The IRBS represents the IMU stability during benign conditions (i.e. ideal

integration time, stable temperature, and no inertial motion).

IEEE-STD-952-1997 defines IRBS as the minima on the Allan Variance curve. The following plots identify the Allan Variance

representation of four IMX-5 tactical grade IMUs (serial numbers 60071, 60079, 60112, and 60114).

15. Frequently Asked Questions

- 315/330 - ©2022

15.2 Why the name change from uINS to IMX?

The name IMX means inertial measurement device with extensible capabilities. IMX is a derivative of the acronym IMU. Our

flagship product was named the uINS which means miniature Inertial Navigation System (INS). This name has helped others to

15.2 Why the name change from uINS to IMX?

- 316/330 - ©2022

recognize the inertial navigation functionality. However, we felt that a more generic name would better cover all of the various

functionality and capabilities contained in the IMX, namely:

Tactical grade Inertial Measurement Unit (IMU)

Barometer and magnetometer sensors

Vertical Reference Unit (VRU)

Attitude Heading Reference System (AHRS)

GNSS aided Inertial Navigation System (GNSS-INS or GPS-INS)

RTK-GNSS aided INS

Dual-GNSS (GPS compassing) aided INS

Ground vehicle Dead Reckoning system

15.3 What is Inertial Navigation?

Inertial navigation is a technique of estimating position, velocity, and orientation (roll, pitch, heading) by integrating IMU inertial

motion data from gyros and accelerometers to continuously calculate the dead reckoning position. The inertial sensors are

supplemented with other sensors such as GPS, altimeter, and magnetometer. Inertial navigation is commonly used on moving

vehicles such as mobile robots, ships, aircraft, submarines, guided missiles, and spacecraft.

15.4 What does an Inertial Navigation System (INS) offer over GPS alone?

Dead Reckoning - An inertial navigation system (INS) integrates the IMU data to dead reckon (estimate position and velocity)

between GPS updates and during GPS outage.

Higher Data Rates - Typical GPS receivers data rates vary from 1Hz to 20Hz whereas INS systems like the IMX have data rates

up to 1KHz.

Signal Conditioning - An INS filters out noise in the GPS data and provides a smoother, more continuous data stream.

Orientation Data - An INS is capable of observing the orientation (roll, pitch, and heading) of the system regardless of the

motion or direction of travel. This is because of how an INS fuses inertial data with GPS data. A GPS with one antenna can

measure direction of travel (ground track heading) but cannot estimate vehicle roll, pitch, or heading.

15.5 Our Sensors - IMU vs AHRS vs INS

Inertial Measurement Unit (IMU) - Uses gyros and accelerometers to measure angular rate and linear acceleration.

Attitude Heading Reference System (AHRS) - Adds sensor fusion to IMU and magnetometer output to estimate orientation or

roll, pitch, and heading.

Inertial Navigation System (INS) - Adds sensor fusion to IMU, GPS, magnetometer, and barometer data to estimate

orientation, velocity, and position.

15.5.1 I have my own GPS system and just need raw motion data, which sensor is for me?

If you have your own filters in place and need raw data for measuring motion, then the IMU is the best option. The IMU provides

raw, calibrated data for temperature, 3D acceleration (accelerometer), 3D magnetic field (magnetometer), and 3D rate of turn.

15.5.2 Which sensor will also provide attitude (roll/pitch/yaw) and heading data?

The AHRS sensor has all the capabilities of the IMU plus data on roll, pitch, and yaw. This sensor uses algorithms to fuse raw

data from the IMU with the Earth’s gravity to provide orientation and is perfect for a robotic arm or indoor floor cleaner.

I need geographic positional data. Which sensor contains a GPS?

•

•

•

•

•

•

•

•

15.3 What is Inertial Navigation?

- 317/330 - ©2022

If the AHRS doesn’t get you what you need, packaging this with one or more GPS sensors will give you the geographic positional

data you need. Like the AHRS, your sensor or should provide some sort of “sensor fusion” by combining all the data from each of

these sensors to give a more accurate and holistic view of your rover’s state.

What do I need to get started?

We recommend beginning with some sort of Development Kit. Ours comes with all of the necessary components to simplify

testing and integration: the sensor you selected, the needed cable and antennas for connectivity, the firmware & software, and

3-5 hrs of complementary engineering support from a team of Inertial Sense engineers.

Additionally, Inertial Sense provides customers with a custom datalogger, called the EvalTool. An easy to use data logging

software to test and troubleshoot your new sensor is essential to your sensor integration experience.

15.6 How long can the IMX dead reckoning estimate position without GPS?

The IMX inertial navigation integrates the IMU data to dead reckoning position and velocity estimation between GPS updates

and for a short period of time during GPS outages. This dead reckoning is designed to filter out GPS noise and provide cleaner

faster updates than are available via GPS alone. The IMX dead-reckons, or estimates position and velocity, between GPS updates

and through brief GPS outages. However, it is not designed for extended position navigation without GPS aiding. Dead reckoning

is disabled after 7 seconds of GPS outage in order to constrain position and velocity drift. The amount of position drift during

dead reckoning can vary based on several factors, including system runtime, motion experienced, and bias stability.

15.7 Can the IMX estimate position without GPS?

IMX can estimate the position for extended periods of time without GPS for ground vehicle dead reckoning applications only (see

Ground Vehicle Dead Reckoning). When in standard mode (not ground vehicle dead reckoning) GPS is required to provide initial

position estimation and to aid in IMU bias estimation. The IMX can dead reckon (estimate position without GPS) for brief periods

of time. However, the quality of dead reckoning is a function of IMU bias estimation, which improves while the GPS is aiding the

INS.

15.8 How does the IMX estimate roll/pitch during airborne coordinate turns (acceleration only in

the Z axis and not in the X and Y axes)?

Using acceleration alone will incorrectly indicate the platform is level. GPS informs the IMX extended Kalman filter (EKF) about

any motion the system experiences and as a result the EKF can distinguish between acceleration due to motion and gravity.

Without a GPS (in AHRS mode) the IMX EKF can only assume the direction of gravity equals the average direction of

acceleration measured slowly over time. The IMX can estimate roll/pitch under accelerated conditions during a coordinated turn

because gyro integration prevents attitude drift over short term and level coordinate turns are cyclical allowing the average

gravity for an entire heading rotation to be observed. However, the IMX AHRS solution under accelerated conditions (moving)

will have degraded attitude accuracy. The IMX solution is more accurate when aided by GPS.

15.9 How does vibration affect navigation accuracy?

The IMX accuracy may degrade in the presence of mechanical vibrations that exceed 3g of acceleration. Empirical data shows

degradation at approximately 100 - 150 Hz. Adding vibration isolation to the mount may be necessary to reduce the vibrations

seen by the product and to improve accuracy.

15.10 Can the IMX operate underwater?

The IMX can only dead reckon for short periods of time and in general requires GPS to provide position and velocity data. The

GPS antenna must be above the water surface in order for the GPS to function properly. It is ideal that the GPS antenna be fixed

relative to the IMX (IMU) module in order to maintain precision when moving faster than 2 m/s or 0.8 m/s^2. However, the GPS

antenna may be tethered above the IMX, where the GPS antenna is floating on the water surface and the IMX is below the water

15.6 How long can the IMX dead reckoning estimate position without GPS?

- 318/330 - ©2022

surface. System position will reflect the GPS antenna position and attitude (roll, pitch, heading) will reflect the IMX module

orientation.

15.11 Can the IMX operate at >4g acceleration?

Typical L1 GPS receivers lose fix above 4g acceleration because the doppler variation starts to get too large and the receiver may

become unstable or not be able to get/keep a fix. Additionally, the acceleration begins to affect the stability of the GPS XTAL

oscillator.

On the IMX, the GPS will regain fix within seconds after acceleration drops below 4g. The IMX will track the velocity and position

using inertial navigation for up to 5 seconds of GPS outage. As long as GPS outage is below 5 seconds, the IMX should be able to

track position through a launch.

15.12 Customer Support

Have other questions or needs? Please email us at support@inertialsense.com.

15.11 Can the IMX operate at >4g acceleration?

- 319/330 - ©2022

mailto:support@inertialsense.com

16. Troubleshooting

16.1 Firmware Troubleshooting

Please email support@inertialsense.com for assistance or to provide feedback on this user guide.

16.1.1 Data doesn't look right

If the EvalTool or SDK are from a different release from the firmware on the unit, there may be communication protocol related

issues. It's best to keep both the software and firmware in sync with each other. The EvalTool should flag a protocol mismatch in

the settings tab.

16.1.2 Bootloader Not Responding

Check the following:

The input supply is at 3.3V and clean without noise.

The serial connection is grounded (no floating grounds).

The serial wires between the uINS module and the next active device (buffer, converter, or processor) are not longer than 1

meter when bootloading firmware.

Reset or power cycle the IMX and promptly run the firmware update within 30 seconds of reset. A known issue in the IMX-5.0

bootloader version v6g and prior versions that disables all UARTS if no handshake is received within 50 second following

startup. Resetting the IMX will re-enable UARTs for 50 seconds.

16.1.3 Bootloader Update fails first time

If updating the bootloader firmware and using the USB direct connection on the IMX module (pins 1 and 2) or the EVB-2 (EVB

USB connector), the serial port number will change when the device switches from application mode to Bootloader Update mode.

This is expected and requires reselecting the new serial port and running the Bootloader Update process a second time.

16.1.4 System in AHRS mode despite GPS messages being received

If attempting to enter NAV mode but the system reports AHRS despite GPS data beig received, then assure your units are not set

to Rover RTK mode. This will override your ability to lock in GPS Nav mode.

16.1.5 "IMX-5 Bricked" System Recovery

Assert chip erase pin high (3.3V) while booting (power cycle or reset) to erase all flash memory and place IMX into ROM

bootloader (DFU) mode.

Note: the IMX bootloader will timeout and disable all UARTS (not USB) after 30 seconds if the sync handshake is not received.

This will render the IMX unresponsive over UART. To prevent this, do not interrupt the standard firmware update process. To

recover the IMX, reset the IMX and then re-apply the firmware update within 30 seconds of reset. https://docs.inertialsense.com/

user-manual/reference/bootloader/#known-issues

Note: Following chip erase: Update firmware using standard procedure including app and bootloader firmware images. Upload

IMU calibration.

16.1.6 "GPX-1 and IMX-5.1 Bricked" System Recovery

Assert boot mode pin high (3.3V) while booting (power cycle or reset) to put the device into bootloader mode. Inertial Sense

customer support is required to facilitate bootloader communications with this device.

•

•

•

•

16. Troubleshooting

- 320/330 - ©2022

mailto:support@inertialsense.com
https://docs.inertialsense.com/user-manual/reference/bootloader/#known-issues
https://docs.inertialsense.com/user-manual/reference/bootloader/#known-issues

16.1.7 "uINS Bricked" System Recovery

There are different reasons a system may appear unresponsive and not communicate. The following sections describe how to

recover a system from these states.

The ONLY indicator that the bootloader is running is the fading cyan module LED. NO communications will appear in the EvalTool or

CLTool. Attempt to update the firmware before performing a chip erase.

Hardware v3.1.3 and firmware IS_uINS-3_v1.2.1.0_b287_2017-09-17_103826.hex and older will not communicate and require

following these instructions to be recovered. Do NOT use the chip erase procedure for this scenario.

Stuck in Bootloader Mode

In some cases, the bootloader may fail to completely update firmware. This is indicated by the fading cyan status LED on the IMX

module. This can happen if older bootloader firmware is on the uINS and firmware version 1.7.1 is uploaded. If this happens, the

system will appear to be unresponsive in the EvalTool. The following process can be used to recover the system to a working

state:

If the bootloader is running, identified with the fading cyan color LED on the uINS module, following these steps:

Ensure uINS Firmware is Running - (This step is not necessary if the uINS firmware is running and the EvalTool is

communicating with the uINS). Select the device serial port and update the firmware using 1.6.4 or earlier. If the bootloader is

running, version information will not appear in the EvalTool. The following bootloader update step will not work unless the

EvalTool is communicating with the uINS firmware.

Update the Bootloader - Use the EvalTool "Update Bootloader" button in the Settings tab to upload the latest bootloader

firmware. If it has a fading cyan color on the uINS module, the bootloader is running and ready for new firmware to be loaded. The

bootloader can only be updated using serial0 or the native USB connection.

Update the Firmware - Use the EvalTool "Update Firmware" button to upload the latest uINS firmware.

If neither the bootloader or the uINS firmware are running, identified with the solid or no LED status on the uINS module, please

contacts us.

Recovery for Firmware v1.2.1.0

Hardware v3.1.3 and newer and firmware IS_uINS-3_v1.2.1.0_b287_2017-09-17_103826.hex and older result in a system that

runs but will not communicate properly. This older firmware was not designed for the newer hardware and consequently runs the

processor at a slower speed, which alters all of the predefined baud rates to non-standard irregular baud rates. A symptom of

this problem is the LED flashing to indicate the processor activity and the module never communicates properly.

The following steps are provided to recover communications with the system.

Install and run the hotfix release 1.1.3 EvalTool.

Select the special baud rate 560,000 in the EvalTool and open the serial port.

Update the firmware using any version newer than IS_uINS-3_v1.2.1.0_b287_2017-09-17_103826.hex.

The latest EvalTool, CLTool, SDK, and firmware can be used once the firmware has been updated on the module.

Attention

Attention

1.

2.

3.

1.

2.

3.

16.1.7 "uINS Bricked" System Recovery

- 321/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/releases/tag/1.6.4
https://github.com/inertialsense/InertialSenseSDK/releases/tag/bootloader
https://github.com/inertialsense/InertialSenseSDK/releases/tag/bootloader
https://github.com/inertialsense/InertialSenseSDK/releases
mailto:support@inertialsense.com
https://github.com/inertialsense/InertialSenseSDK/releases/download/1.1.3/EvalTool.Installer.r1.1.3.2018-06-08.221942.exe

16.1.8 Troubleshooting with EvalTool

Units Not Connecting

In the case that your units do not connect properly to the EvalTool, verify:

The baud rate is the same that you previously had when the Com Ports last opened correctly.

The LED on the unit is not showing solid white, flashing white, or solid red. These mean a failure occured in loading the bootloader

(see User Guide for full LED descriptions).

If you are using a USB3.0 connection, the com port might take longer to show up than with USB2.0

Check your computer's Device Manager to see if your unit shows up there. If it doesn't show up, you may have an FTDI driver

issue.

If you suspect you don't have the FTDI driver installed on your Windows computer, use the following links to download the driver: -

Executable for the FTDI USB driver: - https://ftdichip.com/wp-content/uploads/2023/09/CDM-v2.12.36.4-WHQL-Certified.zip -

Drives without executable. - http://www.ftdichip.com/Drivers/D2XX.htm

16.1.9 Downgrading uINS to 1.8.x Firmware

The following steps can be used to downgrade the uINS firmware to version 1.8.x (or older):

Ensure the uINS is running 1.9.x (or newer) firmware.

Send the system commands SYS_CMD_MANF_UNLOCK and SYS_CMD_MANF_DOWNGRADE_CALIBRATION to the uINS to downgrade the IMU

calibration and put the system into bootloader update mode. This can be done using the EvalTool, cltool, or SDK .

EvalTool (version 1.9.1 or later): Use the firmware "Downgrade" button (EvalTool -> Settings -> General -> Factory ->

Downgrade).

cltool (version 1.10 or later): Use option -sysCmd=1357924682 to send the downgrade command:

cltool alternate method: use option -edit 7 to edit the DID_SYS_CMD and send the downgrade command:

Use w and s to move the cursor up or down (arrow keys do not work) and enter to submit the new value. The invCommand value is

the bitwise inverse of the command and is required to validate the command. The command value will change to zero when the IMX

accepts the command and invCommand values.

Send manufacture unlock command:

Send downgrade command:

Verify the uINS has reboot into bootloader update mode. The host serial port will disappear and reappear. The uINS will NOT

support normal DID binary or NMEA communications in this mode, but will be ready to update the bootloader.

Update the bootloader and firmware using the 1.8.x EvalTool, cltool, or SDK. Be sure to use the bootloader v5d (or older) with the

1.8.x firmware.

1.

2.

3.

4.

a.

1.

2.

a.

b.

./cltool -c /dev/ttyACM0 -sysCmd=1357924682

./cltool -c /dev/ttyACM0 -edit 7

command = 1122334455

invCommand = 3172632840

command = 1357924682

invCommand = 2937042613

3.

4.

16.1.8 Troubleshooting with EvalTool

- 322/330 - ©2022

https://ftdichip.com/wp-content/uploads/2023/09/CDM-v2.12.36.4-WHQL-Certified.zip
http://www.ftdichip.com/Drivers/D2XX.htm

Chip Erase Downgrade

The above process using the SYS_CMD_MANF_DOWNGRADE_CALIBRATION command is recommended as it prevents the need to reload the

IMU calibration onto the uINS. However, an alternative method to downgrade uINS to 1.8.x firmware is as follows:

Chip erase the uINS.

Load v5b (or older) bootloader and 1.8.x (or older) firmware using the 1.8.x EvalTool, cltool, or SDK.

Restore the IMU calibration.

16.1.10 1.7.6 Bug RTK Base GPS Raw work around

If you are having base raw errors on your Rover, in the bottom right of the Evaltool, or a climbing Diffrential Age, in Data Sets

DID_GPS1_RTK_REL, you maybe having this bug. Try this workaround.

Go-to settings tab, open the Base serial COM port.

Go-to Data Logs tab, under RCM Presets dropdown select PPD.

NOTE: You must leave the comport open on the Base.

Check your Rover to see if its still getting raw errors messages.

1.

2.

3.

1.

2.

3.

4.

16.1.10 1.7.6 Bug RTK Base GPS Raw work around

- 323/330 - ©2022

16.2 Chip Erase

Please email support@inertialsense.com for assistance or to provide feedback on this user guide.

Steps for Chip-Erase Recovery

The CHIP ERASE (Reserved (CE) pin 17) erases all flash memory including firmware, settings and calibration. CHIP ERASE should

only be used as a last resort. This step should ONLY be used if the steps for Stuck in Bootloader Mode fail and there is NO other

method to recover communications.

Please notify support@inertialsense.com if this step is necessary so that we can keep track of cause of failures and provide you any

necessary support.

IMX CHIP ERASE PAD

On the IMX-5, CHIP ERASE is enabled if +3.3V (available on pin 22) is applied to the chip erase (CE) pin 17 during boot up from

power cycle or reset.

Connect +3.3V to pin 17 (CE) while power cycling the IMX to chip erase IMX.

Warning

Important

16.2 Chip Erase

- 324/330 - ©2022

mailto:support@inertialsense.com
mailto:support@inertialsense.com

EVB-2 CHIP ERASE PADS

Short R25 pads together to chip erase uINS.

Short R53 pads together to chip erase EVB-2.

RUGGED CHIP ERASE PADS

The chip erase pads on the Rugged-3 are a set of 0402 SMT pads with the label "ERASE". Shorting these pads together will apply

+3.3V to the IMX chip erase pin 17. The power must be cycled while shorting these pads in order to apply chip erase to the

IMX-5.

16.2 Chip Erase

- 325/330 - ©2022

Short "ERASE" pads together and reset to chip erase.

16.2 Chip Erase

- 326/330 - ©2022

RESTORE FIRMWARE

Power on system

Record your IMX Serial Number - If you can read the serial number, record it for reference. On older firmware versions the

serial number will be erased. New firmware versions store the serial number in a location that chip erase won't touch.

Chip Erase IMX - Assert Chip Erase (Reserved (CE) pin 17) on the IMX longer than 100ms by connecting to +3.3V. +3.3V is

available on pin 2 of all EVB headers. Warning!!! - CHIP ERASE erases all flash memory (including firmware, settings, and

calibration) and should only be used as a last resort. This step should ONLY be used if there is NO other method to recover

communications.

Reset the system

Enable EvalTool Internal Mode - This exposes the "Manufacturing" tab used to upload calibration data.

Restore the application and bootloader firmware - Use the "Update Firmware" button in the EvalTool Settings tab to load the

bootloader firmware and IMX firmware.

ENABLE EVALTOOL INTERNAL MODE

EvalTool internal mode is used to access the EvalTool Manufacturing tab, used to restore serial numbers and calibration data.

Close the EvalTool so it isn't running.

Using a text editor, change the value of "DBGINT" to 99 (i.e. "DBGINT": 99,) in settings file: C:\Users\[USERNAME]

\Documents\Inertial Sense\settings.json.

Restart EvalTool and verify "[INTERNAL MODE]" is in the title bar.

RESTORE SENSOR CALIBRATION

Contact InertialSense and provide your unit serial number to request the sensor calibration that corresponds with your unit. Use

the EvalTool to upload the senor calibration onto your unit.

Ensure the EvalTool is in Internal Mode which provides access the Manufacturing tab.

Ensure unit is communicating with EvalTool.

Upload calibration data: EvalTool -> Manufacturing Tab -> "Load" button next to "System Test" button.

Verify "TC Pts" which is the number of calibration points located just below the "Load" button changes from "0,0" to two numbers

larger than 12 (i.e. "18,18").

Reset the unit.

Run "Built-In Test" - Verify the built-in test passes by pressing the "Built-In Test" button in the EvalTool INS tab.

Verify IMU output - Place the unit on a flat level surface. Using the EvalTool Sensor tab, verify that the gyro rates are near zero,

the accelerometer X and Y axes are near zero, and accelerometer Z axis is near -9.8m/s^2 for gravity.

1.

2.

3.

4.

5.

6.

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

16.2 Chip Erase

- 327/330 - ©2022

https://github.com/inertialsense/InertialSenseSDK/releases/tag/bootloader
https://github.com/inertialsense/InertialSenseSDK/releases
mailto:support@inertialsense.com

16.3 IMX Firmware Troubleshooting

16.3.1 Antenna Baseline

Separation between GNSS antennas (or baseline distance) impacts the accuracy and fix time of the solution. Typical Dual GNSS

heading fix time is 60-90 seconds using a 1 meter baseline. Baseline distances shorter than 1 meter will impact both heading

accuracy and time to fix. However, having a short baseline of 0.35m should not cause an extremely long fix time.

ITEM TO TEST: Try increasing the antenna baseline to 0.5m or greater during initial testing.

16.3.2 Satellite CNO Strength, RFI and EMI

What is the satellite CNO (signal strength) level? The mean CNO would ideally be above 38-40. Anything lower could indicate the

presence of RF interference (RFI) or electromagnetic interference (EMI). You can see this in the EvalTool GPS tab or the

DID_GPS1_POS message.

ITEM TO TEST: Try powering off portions of the system while running the IMX. You may even try running the IMX

independently to a separate computer to monitor the system so you can completely power off your system with the IMX still

running. Pay close attention to the GPS CNO during each change.

16.3.3 USB Interface

USB-3 has been known to interfere with wireless and GNSS systems. It is the most common source of interference that has been

experienced. Properly shielded cables or signal filters can address this.

ITEM TO TEST: Disable USB-3, digital busses, or various switching supplies and observe the satellite CNO level. CNO mean

should be near or above 40 dB/Hz.

16.3 IMX Firmware Troubleshooting

- 328/330 - ©2022

16.3.4 Antenna Ground Planes

The ground planes should be adequately sized. Larger ground planes help but are generally not the root cause of poor

performance. Separate and common ground planes are both acceptable.

ITEM TO TEST: Try doubling the ground plane below the antenna. A simple sheet of metal placed below the antenna is fine.

This is also not likely the root cause but worth testing.

16.3.5 Antenna Cable Ground Loops

In come cases the GNSS antenna cable can form an electrical loop and cause interfere.

ITEM TO TEST: Try to ensure cables never loop back or are bundled. If possible shorten cables to smallest required length.

Monitor GPS CNO before and after.

16.3.6 Local Interference

In some cases we have seen object in close proximity to the GNSS antennas act as a multi-path surface, reflect GNSS signals

onto the GNSS antennas. Ensure no objects are near the antennas above the plane of the antennas.

16.3.4 Antenna Ground Planes

- 329/330 - ©2022

16.3.7 Antenna Orientation

A more accurate heading can be achieved if the GNSS antennas have the same antenna orientation (point the same way). You

should consider rotating one or both GNSS antennas so the coax cable exit in the same direction on each antennas.

Mismatch Match Match

16.3.7 Antenna Orientation

- 330/330 - ©2022

	User Manual
	1. Overview
	1.1 IMX-5 (IMU, AHRS, and GPS-INS)
	1.2 Features
	1.3 Interfaces
	1.4 Applications

	2. Data Sheets
	2.1 IMX-5 (IMU, AHRS, GNSS-INS)
	2.2 GPX-1 (Multi-Band L1/L5 Dual GNSS Receiver)
	2.3 uINS-3

	3. Dimensions and Pinouts
	3.1 IMX-5 Series
	3.1.1 IMX-5 (Module)
	3.1.2 GPX-1 (Module)
	3.1.3 RUG-3-IMX-5-IMU
	3.1.4 RUG-3-IMX-5-Dual
	3.1.5 IG-1-IMX-5-Dual (Module)

	3.2 µINS-3 Series
	3.2.1 µINS-3 (Module)
	3.2.2 RUG-2.0
	3.2.3 RUG-1.1

	3.3 Hardware Design Files

	4. Getting Started
	4.1 Getting Started
	4.1.1 1. Install Software
	EvalTool (Windows and Linux)
	CLTool (Windows, Linux, and OS X)
	SDK (Windows, Linux)

	4.1.2 2. Connect Hardware
	4.1.3 3. Configuring Settings
	4.1.4 4. Evaluation and Testing

	4.2 IMX-5 Quick Start Guide
	4.2.1 Basic Configuration
	4.2.2 Demonstration Videos
	Rugged-3-G2 GPS Compassing Configuration Demo
	Rugged-3-G2 RS-485/422 Configuration Demo

	4.2.3 Troubleshooting

	4.3 GPX-1 Quick Start Guide
	4.3.1 Basic Configuration

	5. IS Hardware
	5.1 Hardware Integration: IMX-5 Module
	5.1.1 Pinout
	5.1.2 Application
	Serial Interface
	SPI Interface

	5.1.3 Manufacturing
	Soldering
	Tape Packaging

	5.1.4 Hardware Design
	Recommend PCB Footprint and Layout

	5.1.5 Design Files
	Reference Design Projects

	5.2 Hardware Integration: GPX-1 Module
	5.2.1 Pinout
	5.2.2 Application
	GNSS-INS Block Diagram
	Typical Application: GPX-1 IMX-5

	5.2.3 Layout Guidance
	GNSS_RF Trace

	5.2.4 Design Guidance
	Backup Battery
	RF Front-end Circuit Options

	5.2.5 Manufacturing
	Soldering
	Tape Packaging

	5.2.6 Hardware Design
	Recommend PCB Footprint and Layout

	5.2.7 Design Files
	Reference Design Projects

	5.3 Hardware Integration: RUG-3-IMX-5 (Rugged-3)
	5.3.1 Features
	5.3.2 Applications
	5.3.3 Connecting Your Unit
	GPS Antenna Ports

	5.3.4 Pinout
	5.3.5 I/O Configuration
	5.3.6 Hardware Versions
	5.3.7 Related Parts
	5.3.8 Using with Inertial Sense Software

	5.4 Hardware Integration: IG-1-IMX-5
	5.4.1 Connecting Your Unit
	5.4.2 Pinout
	5.4.3 Hardware Versions
	5.4.4 Schematic
	5.4.5 Hardware Design
	Recommend PCB Footprint and Layout

	5.4.6 Soldering
	5.4.7 Design Files
	Reference Design Projects

	5.4.8 Related Parts

	5.5 Hardware Integration: IG-2 (IMX5 + GPX1)
	5.5.1 Connecting Your Unit
	5.5.2 Pinout
	5.5.3 Schematic
	5.5.4 Hardware Design
	Recommend PCB Footprint and Layout

	5.5.5 Soldering
	5.5.6 Design Files
	Reference Design Projects

	5.5.7 Related Parts

	5.6 Hardware Integration: IK-1 (IMX5 or GPX1)
	5.6.1 Connecting Your Unit
	5.6.2 Pinout
	5.6.3 Schematic
	5.6.4 Design Files
	Reference Design Projects

	5.6.5 Related Parts

	5.7 Hardware Design Files
	5.8 Reflow Soldering
	5.8.1 The following reflow profile is recommended for soldering:

	6. IS Software
	6.1 CLTool
	6.1.1 Overview
	6.1.2 Help Menu
	6.1.3 Compile & Run (Linux/Mac)
	6.1.4 Compile & Run (Windows CMake CL)
	6.1.5 Compile & Run (Windows CMake Visual Studio)
	6.1.6 Updating Firmware with CLTool
	Updating using Firmware Package
	Updating using Single Firmware File (Legacy Mode)

	6.1.7 Logging with CLTool
	Log File Types

	6.1.8 Command Line Options
	6.1.9 Command Line Options in MS Visual Studio

	6.2 EvalTool
	6.2.1 Overview
	6.2.2 Download and Install
	6.2.3 Getting Started
	Data Logging Steps

	6.2.4 Info Bar
	6.2.5 Update Firmware
	6.2.6 Tab Descriptions
	INS Tab
	Sensors Tab
	GPS Tab
	Map Tab
	Data Sets Tab
	Data Logs
	Data Streams
	Data Log

	Settings Tab
	About Tab

	6.3 SDK
	Overview
	6.3.1 C vs. C++ Implementation
	C
	C++

	6.3.2 Installing and Configuring Visual Studio
	Installing
	Configuring

	6.3.3 SDK Example Projects Overview
	6.3.4

	6.4 Log Inspector
	6.4.1 Overview
	6.4.2 Getting Started
	6.4.3 Standard data sets
	6.4.4 Building
	Navigate to the Inertial Sense SDK directory
	Create a config file.
	Add the following or similar contents to this file.

	6.4.5 Running
	To run logInspector open a shell and navigate to the logInspector directory and enter the following commands:

	6.4.6 Other Directory Contents
	logReader
	logPlotter
	logInspector

	7. Communication Protocols
	7.1 Protocol Overview
	7.1.1 Binary vs. NMEA

	7.2 Data Sets (DIDs)
	7.2.1 Data Sets (DIDs)
	INS / AHRS Output
	DID_INS_1
	DID_INS_2
	DID_INS_3
	DID_INS_4

	Inertial Measurement Unit (IMU)
	DID_IMU
	DID_IMU_RAW
	DID_PIMU

	Sensor Output
	DID_BAROMETER
	DID_MAGNETOMETER
	DID_MAG_CAL
	DID_SYS_SENSORS

	GPS / GNSS
	DID_GPS1_POS
	DID_GPS1_RCVR_POS
	DID_GPS1_RTK_POS
	DID_GPS1_RTK_POS_MISC
	DID_GPS1_RTK_POS_REL
	DID_GPS1_SAT
	DID_GPS1_VEL
	DID_GPS1_VERSION
	DID_GPS2_POS
	DID_GPS2_RTK_CMP_MISC
	DID_GPS2_RTK_CMP_REL
	DID_GPS2_SAT
	DID_GPS2_VEL
	DID_GPS2_VERSION
	DID_GPS_RTK_OPT

	GPX
	DID_GPX_DEV_INFO
	DID_GPX_FLASH_CFG
	DID_GPX_RMC
	DID_GPX_STATUS

	Raw GPS Data
	DID_GPS1_RAW
	DID_GPS2_RAW
	DID_GPS_BASE_RAW
	Raw GPS Data Buffer Union
	GPS Galileo QZSS Ephemeris
	GLONASS Ephemeris
	SBAS
	Station Parameters
	Satellite Observation
	Satellite information
	Inertial Measurement Unit (IMU)

	Configuration
	DID_FLASH_CONFIG
	DID_NMEA_BCAST_PERIOD
	DID_RMC

	Command
	DID_SYS_CMD

	EVB-2
	DID_EVB_FLASH_CFG
	DID_EVB_STATUS

	General
	DID_BIT
	DID_CAN_CONFIG
	DID_DEV_INFO
	DID_DIAGNOSTIC_MESSAGE
	DID_EVB_DEBUG_ARRAY
	DID_EVB_DEV_INFO
	DID_EVB_RTOS_INFO
	DID_EVENT
	DID_EVENT_HEADER_SIZE
	DID_GPS1_SIG
	DID_GPS1_TIMEPULSE
	DID_GPS2_SIG
	DID_GPX_BIT
	DID_GPX_DEBUG_ARRAY
	DID_GPX_PORT_MONITOR
	DID_GPX_RTOS_INFO
	DID_GROUND_VEHICLE
	DID_IMU3_RAW
	DID_IMU3_UNCAL
	DID_IMU_MAG
	DID_INFIELD_CAL
	DID_INL2_MAG_OBS_INFO
	DID_INL2_NED_SIGMA
	DID_INL2_STATES
	DID_INL2_STATUS
	DID_IO
	DID_MANUFACTURING_INFO
	DID_PIMU_MAG
	DID_PORT_MONITOR
	DID_POSITION_MEASUREMENT
	DID_REFERENCE_IMU
	DID_REFERENCE_MAGNETOMETER
	DID_REFERENCE_PIMU
	DID_ROS_COVARIANCE_POSE_TWIST
	DID_RTOS_INFO
	DID_RUNTIME_PROFILER
	DID_SCOMP
	DID_SENSORS_ADC
	DID_SENSORS_ADC_SIGMA
	DID_SENSORS_MCAL
	DID_SENSORS_TCAL
	DID_SENSORS_TC_BIAS
	DID_SENSORS_UCAL
	DID_STROBE_IN_TIME
	DID_SURVEY_IN
	DID_SYS_FAULT
	DID_SYS_PARAMS
	DID_WHEEL_ENCODER

	7.2.2 Enumerations and Defines
	General
	DID_EVB_FLASH_CFG.cbPreset
	DID_EVB_FLASH_CFG.portOptions
	DID_EVB_STATUS.loggerMode
	DID_FLASH_CONFIG.gnssSatSigConst
	DID_FLASH_CONFIG.sensorConfig
	DID_FLASH_CONFIG.sysCfgBits
	DID_GPX_FLASH_CFG.sysCfgBits
	DID_GPX_STATUS.hdwStatus
	DID_GPX_STATUS.rtkMode
	DID_GPX_STATUS.status
	DID_SYS_CMD.command
	DID_SYS_PARAMS.genFaultCode
	GPS Navigation Fix Type
	GPS Status
	Hardware Status Flags
	IMU Status
	INS status Flags
	Magnetometer Recalibration Mode
	RTK Configuration
	System Configuration

	7.3 Inertial Sense Binary (ISB) Protocol
	7.3.1 Communication
	Setting Data
	Getting Data
	Get Data Command
	Data Source Update Rates
	Realtime Message Controller (RMC)
	Persistent Messages
	Enabling Persistent Messages - EvalTool
	Enabling Persistent Messages - CLTool

	Example Projects

	Parsing Data
	One Byte (Simple Method)
	Set of Bytes (Fast Method)

	7.3.2 ISB Packet Overview
	ISB Packet
	Header Type and Flags
	Header DID
	Header Payload Size
	Footer Checksum

	ISB Packet with Data Offset
	ISB Packet with No Payload
	ISB Get Data Packet

	7.3.3 Stop Broadcasts Packets
	All Ports
	Current Port Only

	7.3.4 RMC Presets
	RMC Preset Stream PPD

	7.4 NMEA 0183 (ASCII) Protocol
	7.4.1 Communications Examples
	7.4.2 Packet Structure
	7.4.3 Persistent Messages
	Enabling Persistent Messages - EvalTool

	7.4.4 NMEA Input Messages
	ASCE
	Example Messages

	PERS
	STPB
	STPC

	7.4.5 NMEA Output Messages
	NMEA Output GNSS Source
	PIMU
	PPIMU
	PRIMU
	PINS1
	PINS2
	PGPSP
	GGA
	GLL
	GSA
	RMC
	VTG
	ZDA
	GSV
	GSV Output Filtering
	Filtered GSV NMEA Message IDs

	VTG
	PASHR
	PSTRB
	INFO

	7.4.6 NMEA Examples

	7.5 SPI Protocol
	7.5.1 Enable SPI
	7.5.2 Hardware
	Hardware Configuration
	Data Transfer
	Data Ready Pin Option
	Reading Data
	Pseudo Code for reading data:

	7.5.3 EVB-2 SPI Dev Kit
	7.5.4 Troubleshooting
	7.5.5 Resources

	7.6 CAN Protocol
	7.6.1 Enable CAN
	7.6.2 Hardware
	7.6.3 CAN Data Sets (CIDs)
	CID_INS_TIME
	CID_INS_STATUS
	CID_INS_EULER
	CID_INS_QUATN2B
	CID_INS_QUATE2B
	CID_INS_UVW
	CID_INS_VE
	CID_INS_LAT
	CID_INS_LON
	CID_INS_ALT
	CID_INS_NORTH_EAST
	CID_INS_DOWN
	CID_INS_ECEF_X
	CID_INS_ECEF_Y
	CID_INS_ECEF_Z
	CID_INS_MSL
	CID_PREINT_PX
	CID_PREINT_QY
	CID_PREINT_RZ
	CID_DUAL_PX
	CID_DUAL_QY
	CID_DUAL_RZ
	CID_GPS1_POS
	CID_GPS1_RTK_POS_REL
	CID_GPS2_RTK_CMP_REL
	CID_ROLL_ROLLRATE

	8. GNSS - RTK
	8.1 Multi-band GNSS
	8.1.1 Multi-band GNSS
	Advantages
	Overview
	Dual GNSS Heading Accuracy
	Single GNSS RTK Positioning w/ LiDAR
	Dual GNSS RTK Positioning and RTK Compassing

	8.1.2 IS GPX-1
	Typical Interface
	Rugged-4 (Coming Soon)

	8.1.3 ublox F9P
	Rugged-3
	Single GNSS Settings
	Dual GNSS Settings

	Rugged-3-IMX-5 to ZED-F9P
	Settings

	RTK Base Messages
	ZED-F9 Rover Messages
	ZED-F9 Base Output Messages
	NTRIP Messages

	ZED-F9P Firmware Update
	GPS Firmware Version
	Firmware Update

	Multi-Band GNSS Components

	8.2 External NMEA GNSS
	8.2.1 Configure IMX for NMEA GNSS Input
	8.2.2 Electrical Interface
	8.2.3 Enabling NMEA on ZED-F9P

	8.3 GNSS Antennas
	8.3.1 Selecting a GNSS Antenna
	8.3.2 GNSS Antenna Integration Considerations
	GNSS Antenna Ground Plane
	Helpful Links:

	8.3.3 Recommended GNSS Components
	Enclosed GNSS Antennas
	OEM GNSS Antennas
	Related GNSS Parts

	8.4 GNSS Satellite Constellations
	8.4.1 Constellation Selection

	8.5 RTK Positioning
	8.5.1 RTK Precision Positioning
	Overview
	RTK Hardware Setup
	BASE STATION OPTIONS
	Rover Options
	Base to Rover Communication

	How to Know RTK is Working
	USING THE EVALTOOL
	USING THE CLTOOL

	RTK Fix Status
	LED INDICATORS
	RTK Positioning Valid Flags
	Progress and Accuracy

	RTK Base Messages

	8.5.2 Rover Setup
	System Configuration
	EvalTool
	CLTool

	Communications Setup
	EVB2 RADIO
	EvalTool

	NTRIP CLIENT
	EvalTool
	CLTool

	TCP/IP
	EvalTool
	CLTool

	EVB2 WIFI

	8.5.3 Base Setup
	RTK Base Configuration
	Surveying In Base Position
	EvalTool
	Using DID_SURVEY_IN

	Communications Setup
	RADIO
	EvalTool
	CLTool

	TCP/IP SETUP
	CLTool

	8.5.4 NTRIP
	NTRIP RTCM3 Messages
	Required RTCM Messages for RTK Positioning

	8.5.5 Using uBlox PointPerfect L-band Corrections
	Firmware update
	Configuration of the F9P

	8.5.6 Using uBlox SBAS corrections
	Firmware update
	Configuration of the F9P

	8.6 Dual GNSS RTK Compassing
	8.6.1 Overview
	8.6.2 Heading Accuracy
	Recommenced Minimum Baseline

	8.6.3 Antenna Orientation
	8.6.4 Rugged GNSS Antenna Ports
	8.6.5 Dual Antenna Locations
	Example Antennae Configurations
	Drone
	Automobile

	GPS Antenna Ports

	8.6.6 Setup
	Step 1 - Specify Offsets for Both Antennae
	Step 2 - Enable GPS Dual Antenna

	8.6.7 RTK Compassing Fix Status
	INS and GPS Status Flags
	Progress and Accuracy

	8.6.8 Stationary Application

	9. Dead Reckoning
	9.1 Ground Vehicle Dead Reckoning
	9.1.1 Overview
	9.1.2 Installation
	Enabling
	Learning Mode
	Learning Mode Instructions
	Using the EvalTool
	Using the DID_GROUND_VEHICLE Message

	9.1.3 Examples

	9.2 IMX Dead Reckoning Examples
	9.2.1 Parking Lot Simulated GNSS Outage
	9.2.2 Multi-Level Parking Garage
	9.2.3 Conclusion

	10. General Configuration
	10.1 Infield Calibration
	10.1.1 Zeroing IMU Bias
	Accelerometer Bias
	Gyro Bias

	10.1.2 Zeroing INS Attitude
	10.1.3 Infield Calibration Process
	EvalTool or CLTool for Infield Cal
	CLTool Infield Cal

	10.2 Platform Configuration
	10.2.1 Platform Type
	10.2.2 I/O Presets

	10.3 IMU INS GNSS Configuration
	10.3.1 Translation
	Coordinate Frame Relationship
	Sensor Rotation (Hardware Frame to Sensor Frame)
	INS Rotation
	INS Offset
	Manually Aligning the INS After Mounting

	10.3.2 Infield Calibration
	10.3.3 GNSS Antenna Offset
	10.3.4 IMU Sample and Navigation Periods
	IMU Latency
	Navigation Update and Output Periods
	Minimum NAV Output and Update Period (Maximum Data Rate)

	10.3.5 INS-GNSS Dynamic Model
	10.3.6 Disable Magnetometer and Barometer Updates
	10.3.7 Disable Zero Velocity Updates
	10.3.8 Disable Zero Angular Rate Updates

	10.4 System Configuration
	10.4.1 Serial Port Baud Rates
	High Speed Baud Rates
	Baud Rate Configuration

	10.5 Time Synchronization
	10.5.1 INS & GPS Timestamps
	GPS to UTC Time Conversion

	10.5.2 GPS Time Synchronization
	10.5.3 Using the Strobe Input Pins
	Strobe I/O Events
	Strobe Input (Time Sync Input)
	Troubleshooting Input Strobe
	Input Voltage Level Shifter

	Strobe Output (Preintegrated IMU Period)
	Configuring Message Output

	10.6 Zero Motion Command
	10.7 UART Interface
	10.7.1 Actual UART Baud Rates
	IMX-5 UART Baud Rate Equation
	uINS-3 UART Baud Rate Equation

	11. SDK
	11.1 Inertial Sense SDK
	Documents
	Downloads
	Hardware Design Files
	Support
	Open Source License

	11.2 Example Projects
	11.2.1 Binary Communications Example Project
	Files
	Project Files
	SDK Files

	Implementation
	Step 1: Add Includes
	Step 2: Init comm instance
	Step 3: Initialize and open serial port
	Step 4: Stop any message broadcasting
	Step 5: Set configuration (optional)
	Step 6: Enable message broadcasting
	Step 7: Save Persistent Messages
	Step 8: Handle received data

	Compile & Run (Linux/Mac)
	Compile & Run (Windows Powershell)
	Summary

	11.2.2 ASCII Communications Example Project
	Files
	Project Files
	SDK Files

	Implementation
	Step 1: Add Includes
	Step 2: Initialize and open serial port
	Step 3: Disable prior message broadcasting
	Step 4: Enable message broadcasting
	Step 5: Save persistent messages
	Step 6: Handle received data

	Compile & Run (Linux/Mac)
	Compile & Run (Windows Powershell)
	Summary

	11.2.3 Basic Arduino Communications Example Project
	Interfacing with the IMX over serial
	Wiring Guide
	SDK Implementation
	Step 1: Add Includes
	Step 2: Create buffers
	Step 3: Serial Port Initialization
	Step 4: Handle Received Data

	11.2.4 Firmware Update (Bootloader) Example Project
	Files
	Project Files
	SDK Files

	Implementation
	Step 1: Add Includes
	Step 2: Initialize and open serial port
	Step 3: Set bootloader parameters
	Step 4: Run bootloader

	Compile & Run (Linux/Mac)
	Compile & Run (Windows Powershell)
	Summary

	11.2.5 C++ API - Inertial Sense Class and CLTool Example Project
	CLTool Example
	Implementation Keywords

	Serial Communications
	Step 1: Instantiate InertialSense class
	Step 2: Open serial port
	Step 3: Enable data broadcasting
	Step 4: Read data
	Step 5: Handle received data
	Step 6: Close interface

	Data Logging
	Step 1: Configure and Start Logging

	Compile & Run (Linux/Mac)
	Compile & Run (Windows Powershell)
	Summary

	11.2.6 Data Logging Example Project
	Files
	Project Files
	SDK Files

	Implementation
	Step 1: Add Includes
	Step 2: Instantiate InertialSense class
	Step 3: Enable data logger
	Step 4: Enable data broadcasting

	Compile & Run (Linux/Mac)
	Compile & Run (Windows Powershell)
	Summary

	12. Data Logging/Plotting
	12.1 Data Logging/Plotting
	12.1.1 Data Log Types
	Comma Seperated Values (*.csv)
	KML (*.kml)
	Binary Data Log (*.raw and *.dat)

	12.1.2 Binary Data Log Format
	File
	Chunk
	Chunk Header
	Chunk Data
	Data Set Header

	12.2 Logging
	12.2.1 Logging using Inertial Sense software
	EvalTool
	CLTool

	12.2.2 Post Process Data (PPD) Logging Instructions
	PPD RMC bits Preset
	Logging PPD in EvalTool
	Logging PPD in CLTool

	12.3 Plotting
	12.3.1 Log Inspector
	12.3.2 CLTool
	12.3.3 3rd Party Software

	13. Reference
	13.1 IMX-5.0 Bootloader
	13.1.1 Application Firmware Update
	13.1.2 Bootloader Update
	13.1.3 Known Issues

	13.2 Coordinate Frames
	13.2.1 Coordinate Frame Relationship
	13.2.2 Hardware Frame
	13.2.3 Sensor Frame
	13.2.4 INS Output Frame
	13.2.5 North-East-Down (NED) Frame
	13.2.6 Earth-Centered Earth-Fixed (ECEF) Frame
	13.2.7 Coordinate Frames Transformation Functions
	Body frame to NED frame
	ECEF frame to NED frame

	13.3 Definitions
	13.3.1 GPS Time To Fix
	13.3.2 Preintegrated IMU
	13.3.3 IMU Bias Repeatability (Turn-on to Turn-on Bias)
	13.3.4 IMU Bias Stability (In-Run Bias)
	13.3.5 Random Walk
	13.3.6 Sensor Orthogonality (Cross-Axis Alignment Error)

	13.4 IMU Specifications
	13.4.1 IMU Noise Specification Conversion to Standard Deviation
	Time Conversion Factor
	1. Gyroscope Noise (° and °/s)
	2. Accelerometer Noise (m/s and m/s²)
	Velocity Drift Standard Deviation (m/s)
	Accelerometer Standard Deviation in Terms of Acceleration (m/s²)

	Summary of Results:

	13.5 Interference Considerations
	13.5.1 Detecting Interference
	13.5.2 Interference Mitigation
	13.5.3 Magnetic Interference
	13.5.4 Mechanical Vibration
	13.5.5 Temperature Sensitivity

	13.6 Magnetometer
	13.6.1 Disable Magnetometer Updates
	13.6.2 Magnetometer Recalibration
	External Recalibration
	Automatic Recalibration

	13.6.3 Magnetometer Continuous Calibration
	13.6.4 Magnetometer Calibration Settings

	14. User Manual PDF
	15. Frequently Asked Questions
	15.1 What is a Tactical Grade IMU?
	15.2 Why the name change from uINS to IMX?
	15.3 What is Inertial Navigation?
	15.4 What does an Inertial Navigation System (INS) offer over GPS alone?
	15.5 Our Sensors - IMU vs AHRS vs INS
	15.5.1 I have my own GPS system and just need raw motion data, which sensor is for me?
	15.5.2 Which sensor will also provide attitude (roll/pitch/yaw) and heading data?

	15.6 How long can the IMX dead reckoning estimate position without GPS?
	15.7 Can the IMX estimate position without GPS?
	15.8 How does the IMX estimate roll/pitch during airborne coordinate turns (acceleration only in the Z axis and not in the X and Y axes)?
	15.9 How does vibration affect navigation accuracy?
	15.10 Can the IMX operate underwater?
	15.11 Can the IMX operate at >4g acceleration?
	15.12 Customer Support

	16. Troubleshooting
	16.1 Firmware Troubleshooting
	16.1.1 Data doesn't look right
	16.1.2 Bootloader Not Responding
	16.1.3 Bootloader Update fails first time
	16.1.4 System in AHRS mode despite GPS messages being received
	16.1.5 "IMX-5 Bricked" System Recovery
	16.1.6 "GPX-1 and IMX-5.1 Bricked" System Recovery
	16.1.7 "uINS Bricked" System Recovery
	Stuck in Bootloader Mode
	Recovery for Firmware v1.2.1.0

	16.1.8 Troubleshooting with EvalTool
	Units Not Connecting

	16.1.9 Downgrading uINS to 1.8.x Firmware
	Chip Erase Downgrade

	16.1.10 1.7.6 Bug RTK Base GPS Raw work around

	16.2 Chip Erase
	Steps for Chip-Erase Recovery
	IMX Chip Erase Pad
	EVB-2 Chip Erase Pads
	Rugged Chip Erase Pads
	Restore Firmware
	Enable EvalTool Internal Mode
	Restore Sensor Calibration

	16.3 IMX Firmware Troubleshooting
	16.3.1 Antenna Baseline
	16.3.2 Satellite CNO Strength, RFI and EMI
	16.3.3 USB Interface
	16.3.4 Antenna Ground Planes
	16.3.5 Antenna Cable Ground Loops
	16.3.6 Local Interference
	16.3.7 Antenna Orientation

